# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Implements ufuncs for jax.numpy.
"""
from __future__ import annotations
from collections.abc import Callable
from functools import partial
import operator
from typing import Any
import numpy as np
from jax._src import core
from jax._src import dtypes
from jax._src.api import jit
from jax._src.custom_derivatives import custom_jvp
from jax._src.lax import lax
from jax._src.lax import other as lax_other
from jax._src.typing import Array, ArrayLike, DTypeLike
from jax._src.numpy.util import (
check_arraylike, promote_args, promote_args_inexact,
promote_args_numeric, promote_dtypes_inexact, promote_dtypes_numeric,
promote_shapes, _where, implements, check_no_float0s)
from jax._src.numpy.ufunc_api import ufunc
from jax._src.numpy import reductions
_lax_const = lax._const
_INT_DTYPES = {
16: np.int16,
32: np.int32,
64: np.int64,
}
def _constant_like(x, const):
return np.array(const, dtype=dtypes.dtype(x))
def _replace_inf(x: ArrayLike) -> Array:
return lax.select(isposinf(real(x)), lax._zeros(x), x)
def _to_bool(x: Array) -> Array:
return x if x.dtype == bool else lax.ne(x, _lax_const(x, 0))
@partial(jit, inline=True)
def fabs(x: ArrayLike, /) -> Array:
"""Compute the element-wise absolute values of the real-valued input.
JAX implementation of :obj:`numpy.fabs`.
Args:
x: input array or scalar. Must not have a complex dtype.
Returns:
An array with same shape as ``x`` and dtype float, containing the element-wise
absolute values.
See also:
- :func:`jax.numpy.absolute`: Computes the absolute values of the input including
complex dtypes.
- :func:`jax.numpy.abs`: Computes the absolute values of the input including
complex dtypes.
Examples:
For integer inputs:
>>> x = jnp.array([-5, -9, 1, 10, 15])
>>> jnp.fabs(x)
Array([ 5., 9., 1., 10., 15.], dtype=float32)
For float type inputs:
>>> x1 = jnp.array([-1.342, 5.649, 3.927])
>>> jnp.fabs(x1)
Array([1.342, 5.649, 3.927], dtype=float32)
For boolean inputs:
>>> x2 = jnp.array([True, False])
>>> jnp.fabs(x2)
Array([1., 0.], dtype=float32)
"""
check_arraylike('fabs', x)
if dtypes.issubdtype(dtypes.dtype(x), np.complexfloating):
raise TypeError("ufunc 'fabs' does not support complex dtypes")
return lax.abs(*promote_args_inexact('fabs', x))
@partial(jit, inline=True)
def bitwise_invert(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.invert`."""
return lax.bitwise_not(*promote_args('bitwise_invert', x))
@partial(jit, inline=True)
def bitwise_not(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.invert`."""
return lax.bitwise_not(*promote_args('bitwise_not', x))
@partial(jit, inline=True)
def invert(x: ArrayLike, /) -> Array:
"""Compute the bitwise inversion of an input.
JAX implementation of :func:`numpy.invert`. This function provides the
implementation of the ``~`` operator for JAX arrays.
Args:
x: input array, must be boolean or integer typed.
Returns:
An array of the same shape and dtype as ```x``, with the bits inverted.
See also:
- :func:`jax.numpy.bitwise_invert`: Array API alias of this function.
- :func:`jax.numpy.logical_not`: Invert after casting input to boolean.
Examples:
>>> x = jnp.arange(5, dtype='uint8')
>>> print(x)
[0 1 2 3 4]
>>> print(jnp.invert(x))
[255 254 253 252 251]
This function implements the unary ``~`` operator for JAX arrays:
>>> print(~x)
[255 254 253 252 251]
:func:`invert` operates bitwise on the input, and so the meaning of its
output may be more clear by showing the bitwise representation:
>>> with jnp.printoptions(formatter={'int': lambda x: format(x, '#010b')}):
... print(f"{x = }")
... print(f"{~x = }")
x = Array([0b00000000, 0b00000001, 0b00000010, 0b00000011, 0b00000100], dtype=uint8)
~x = Array([0b11111111, 0b11111110, 0b11111101, 0b11111100, 0b11111011], dtype=uint8)
For boolean inputs, :func:`invert` is equivalent to :func:`logical_not`:
>>> x = jnp.array([True, False, True, True, False])
>>> jnp.invert(x)
Array([False, True, False, False, True], dtype=bool)
"""
return lax.bitwise_not(*promote_args('invert', x))
@partial(jit, inline=True)
def _negative(x: ArrayLike, /) -> Array:
"""Return element-wise negative values of the input.
JAX implementation of :obj:`numpy.negative`.
Args:
x: input array or scalar.
Returns:
An array with same shape and dtype as ``x`` containing ``-x``.
See also:
- :func:`jax.numpy.positive`: Returns element-wise positive values of the input.
- :func:`jax.numpy.sign`: Returns element-wise indication of sign of the input.
Note:
``jnp.negative``, when applied over ``unsigned integer``, produces the result
of their two's complement negation, which typically results in unexpected
large positive values due to integer underflow.
Examples:
For real-valued inputs:
>>> x = jnp.array([0., -3., 7])
>>> jnp.negative(x)
Array([-0., 3., -7.], dtype=float32)
For complex inputs:
>>> x1 = jnp.array([1-2j, -3+4j, 5-6j])
>>> jnp.negative(x1)
Array([-1.+2.j, 3.-4.j, -5.+6.j], dtype=complex64)
For unit32:
>>> x2 = jnp.array([5, 0, -7]).astype(jnp.uint32)
>>> x2
Array([ 5, 0, 4294967289], dtype=uint32)
>>> jnp.negative(x2)
Array([4294967291, 0, 7], dtype=uint32)
"""
return lax.neg(*promote_args('negative', x))
@partial(jit, inline=True)
def positive(x: ArrayLike, /) -> Array:
"""Return element-wise positive values of the input.
JAX implementation of :obj:`numpy.positive`.
Args:
x: input array or scalar
Returns:
An array of same shape and dtype as ``x`` containing ``+x``.
Note:
``jnp.positive`` is equivalent to ``x.copy()`` and is defined only for the
types that support arithmetic operations.
See also:
- :func:`jax.numpy.negative`: Returns element-wise negative values of the input.
- :func:`jax.numpy.sign`: Returns element-wise indication of sign of the input.
Examples:
For real-valued inputs:
>>> x = jnp.array([-5, 4, 7., -9.5])
>>> jnp.positive(x)
Array([-5. , 4. , 7. , -9.5], dtype=float32)
>>> x.copy()
Array([-5. , 4. , 7. , -9.5], dtype=float32)
For complex inputs:
>>> x1 = jnp.array([1-2j, -3+4j, 5-6j])
>>> jnp.positive(x1)
Array([ 1.-2.j, -3.+4.j, 5.-6.j], dtype=complex64)
>>> x1.copy()
Array([ 1.-2.j, -3.+4.j, 5.-6.j], dtype=complex64)
For uint32:
>>> x2 = jnp.array([6, 0, -4]).astype(jnp.uint32)
>>> x2
Array([ 6, 0, 4294967292], dtype=uint32)
>>> jnp.positive(x2)
Array([ 6, 0, 4294967292], dtype=uint32)
"""
return lax.asarray(*promote_args('positive', x))
@partial(jit, inline=True)
def sign(x: ArrayLike, /) -> Array:
r"""Return an element-wise indication of sign of the input.
JAX implementation of :obj:`numpy.sign`.
The sign of ``x`` for real-valued input is:
.. math::
\mathrm{sign}(x) = \begin{cases}
1, & x > 0\\
0, & x = 0\\
-1, & x < 0
\end{cases}
For complex valued input, ``jnp.sign`` returns a unit vector repesenting the
phase. For generalized case, the sign of ``x`` is given by:
.. math::
\mathrm{sign}(x) = \begin{cases}
\frac{x}{abs(x)}, & x \ne 0\\
0, & x = 0
\end{cases}
Args:
x: input array or scalar.
Returns:
An array with same shape and dtype as ``x`` containing the sign indication.
See also:
- :func:`jax.numpy.positive`: Returns element-wise positive values of the input.
- :func:`jax.numpy.negative`: Returns element-wise negative values of the input.
Examples:
For Real-valued inputs:
>>> x = jnp.array([0., -3., 7.])
>>> jnp.sign(x)
Array([ 0., -1., 1.], dtype=float32)
For complex-inputs:
>>> x1 = jnp.array([1, 3+4j, 5j])
>>> jnp.sign(x1)
Array([1. +0.j , 0.6+0.8j, 0. +1.j ], dtype=complex64)
"""
return lax.sign(*promote_args('sign', x))
@partial(jit, inline=True)
def floor(x: ArrayLike, /) -> Array:
"""Round input to the nearest integer downwards.
JAX implementation of :obj:`numpy.floor`.
Args:
x: input array or scalar. Must not have complex dtype.
Returns:
An array with same shape and dtype as ``x`` containing the values rounded to
the nearest integer that is less than or equal to the value itself.
See also:
- :func:`jax.numpy.fix`: Rounds the input to the nearest interger towards zero.
- :func:`jax.numpy.trunc`: Rounds the input to the nearest interger towards
zero.
- :func:`jax.numpy.ceil`: Rounds the input up to the nearest integer.
Examples:
>>> key = jax.random.key(42)
>>> x = jax.random.uniform(key, (3, 3), minval=-5, maxval=5)
>>> with jnp.printoptions(precision=2, suppress=True):
... print(x)
[[ 1.44 -1.77 -3.07]
[ 3.86 2.25 -3.08]
[-1.55 -2.48 1.32]]
>>> jnp.floor(x)
Array([[ 1., -2., -4.],
[ 3., 2., -4.],
[-2., -3., 1.]], dtype=float32)
"""
check_arraylike('floor', x)
if dtypes.isdtype(dtypes.dtype(x), ('integral', 'bool')):
return lax.asarray(x)
return lax.floor(*promote_args_inexact('floor', x))
@partial(jit, inline=True)
def ceil(x: ArrayLike, /) -> Array:
"""Round input to the nearest integer upwards.
JAX implementation of :obj:`numpy.ceil`.
Args:
x: input array or scalar. Must not have complex dtype.
Returns:
An array with same shape and dtype as ``x`` containing the values rounded to
the nearest integer that is greater than or equal to the value itself.
See also:
- :func:`jax.numpy.fix`: Rounds the input to the nearest interger towards zero.
- :func:`jax.numpy.trunc`: Rounds the input to the nearest interger towards
zero.
- :func:`jax.numpy.floor`: Rounds the input down to the nearest integer.
Examples:
>>> key = jax.random.key(1)
>>> x = jax.random.uniform(key, (3, 3), minval=-5, maxval=5)
>>> with jnp.printoptions(precision=2, suppress=True):
... print(x)
[[ 2.55 -1.87 -3.76]
[ 0.48 3.85 -1.94]
[ 3.2 4.56 -1.43]]
>>> jnp.ceil(x)
Array([[ 3., -1., -3.],
[ 1., 4., -1.],
[ 4., 5., -1.]], dtype=float32)
"""
check_arraylike('ceil', x)
if dtypes.isdtype(dtypes.dtype(x), ('integral', 'bool')):
return lax.asarray(x)
return lax.ceil(*promote_args_inexact('ceil', x))
@partial(jit, inline=True)
def exp(x: ArrayLike, /) -> Array:
"""Calculate element-wise exponential of the input.
JAX implementation of :obj:`numpy.exp`.
Args:
x: input array or scalar
Returns:
An array containing the exponential of each element in ``x``, promotes to
inexact dtype.
See also:
- :func:`jax.numpy.log`: Calculates element-wise logarithm of the input.
- :func:`jax.numpy.expm1`: Calculates :math:`e^x-1` of each element of the
input.
- :func:`jax.numpy.exp2`: Calculates base-2 exponential of each element of
the input.
Examples:
``jnp.exp`` follows the properties of exponential such as :math:`e^{(a+b)}
= e^a * e^b`.
>>> x1 = jnp.array([2, 4, 3, 1])
>>> x2 = jnp.array([1, 3, 2, 3])
>>> with jnp.printoptions(precision=2, suppress=True):
... print(jnp.exp(x1+x2))
[ 20.09 1096.63 148.41 54.6 ]
>>> with jnp.printoptions(precision=2, suppress=True):
... print(jnp.exp(x1)*jnp.exp(x2))
[ 20.09 1096.63 148.41 54.6 ]
This property holds for complex input also:
>>> jnp.allclose(jnp.exp(3-4j), jnp.exp(3)*jnp.exp(-4j))
Array(True, dtype=bool)
"""
return lax.exp(*promote_args_inexact('exp', x))
@partial(jit, inline=True)
def log(x: ArrayLike, /) -> Array:
"""Calculate element-wise natural logarithm of the input.
JAX implementation of :obj:`numpy.log`.
Args:
x: input array or scalar.
Returns:
An array containing the logarithm of each element in ``x``, promotes to inexact
dtype.
See also:
- :func:`jax.numpy.exp`: Calculates element-wise exponential of the input.
- :func:`jax.numpy.log2`: Calculates base-2 logarithm of each element of input.
- :func:`jax.numpy.log1p`: Calculates element-wise logarithm of one plus input.
Examples:
``jnp.log`` and ``jnp.exp`` are inverse functions of each other. Applying
``jnp.log`` on the result of ``jnp.exp(x)`` yields the original input ``x``.
>>> x = jnp.array([2, 3, 4, 5])
>>> jnp.log(jnp.exp(x))
Array([2., 3., 4., 5.], dtype=float32)
Using ``jnp.log`` we can demonstrate well-known properties of logarithms, such
as :math:`log(a*b) = log(a)+log(b)`.
>>> x1 = jnp.array([2, 1, 3, 1])
>>> x2 = jnp.array([1, 3, 2, 4])
>>> jnp.allclose(jnp.log(x1*x2), jnp.log(x1)+jnp.log(x2))
Array(True, dtype=bool)
"""
return lax.log(*promote_args_inexact('log', x))
@partial(jit, inline=True)
def expm1(x: ArrayLike, /) -> Array:
"""Calculate ``exp(x)-1`` of each element of the input.
JAX implementation of :obj:`numpy.expm1`.
Args:
x: input array or scalar.
Returns:
An array containing ``exp(x)-1`` of each element in ``x``, promotes to inexact
dtype.
Note:
``jnp.expm1`` has much higher precision than the naive computation of
``exp(x)-1`` for small values of ``x``.
See also:
- :func:`jax.numpy.log1p`: Calculates element-wise logarithm of one plus input.
- :func:`jax.numpy.exp`: Calculates element-wise exponential of the input.
- :func:`jax.numpy.exp2`: Calculates base-2 exponential of each element of
the input.
Examples:
>>> x = jnp.array([2, -4, 3, -1])
>>> with jnp.printoptions(precision=2, suppress=True):
... print(jnp.expm1(x))
[ 6.39 -0.98 19.09 -0.63]
>>> with jnp.printoptions(precision=2, suppress=True):
... print(jnp.exp(x)-1)
[ 6.39 -0.98 19.09 -0.63]
For values very close to 0, ``jnp.expm1(x)`` is much more accurate than
``jnp.exp(x)-1``:
>>> x1 = jnp.array([1e-4, 1e-6, 2e-10])
>>> jnp.expm1(x1)
Array([1.0000500e-04, 1.0000005e-06, 2.0000000e-10], dtype=float32)
>>> jnp.exp(x1)-1
Array([1.00016594e-04, 9.53674316e-07, 0.00000000e+00], dtype=float32)
"""
return lax.expm1(*promote_args_inexact('expm1', x))
@partial(jit, inline=True)
def log1p(x: ArrayLike, /) -> Array:
"""Calculates element-wise logarithm of one plus input, ``log(x+1)``.
JAX implementation of :obj:`numpy.log1p`.
Args:
x: input array or scalar.
Returns:
An array containing the logarithm of one plus of each element in ``x``,
promotes to inexact dtype.
Note:
``jnp.log1p`` is more accurate than when using the naive computation of
``log(x+1)`` for small values of ``x``.
See also:
- :func:`jax.numpy.expm1`: Calculates :math:`e^x-1` of each element of the
input.
- :func:`jax.numpy.log2`: Calculates base-2 logarithm of each element of input.
- :func:`jax.numpy.log`: Calculates element-wise logarithm of the input.
Examples:
>>> x = jnp.array([2, 5, 9, 4])
>>> jnp.allclose(jnp.log1p(x), jnp.log(x+1))
Array(True, dtype=bool)
For values very close to 0, ``jnp.log1p(x)`` is more accurate than
``jnp.log(x+1)``:
>>> x1 = jnp.array([1e-4, 1e-6, 2e-10])
>>> jnp.expm1(jnp.log1p(x1)) # doctest: +SKIP
Array([1.00000005e-04, 9.99999997e-07, 2.00000003e-10], dtype=float32)
>>> jnp.expm1(jnp.log(x1+1)) # doctest: +SKIP
Array([1.000166e-04, 9.536743e-07, 0.000000e+00], dtype=float32)
"""
return lax.log1p(*promote_args_inexact('log1p', x))
@partial(jit, inline=True)
def sin(x: ArrayLike, /) -> Array:
"""Compute a trigonometric sine of each element of input.
JAX implementation of :obj:`numpy.sin`.
Args:
x: array or scalar. Angle in radians.
Returns:
An array containing the sine of each element in ``x``, promotes to inexact
dtype.
See also:
- :func:`jax.numpy.cos`: Computes a trigonometric cosine of each element of
input.
- :func:`jax.numpy.tan`: Computes a trigonometric tangent of each element of
input.
- :func:`jax.numpy.arcsin` and :func:`jax.numpy.asin`: Computes the inverse of
trigonometric sine of each element of input.
Examples:
>>> pi = jnp.pi
>>> x = jnp.array([pi/4, pi/2, 3*pi/4, pi])
>>> with jnp.printoptions(precision=3, suppress=True):
... print(jnp.sin(x))
[ 0.707 1. 0.707 -0. ]
"""
return lax.sin(*promote_args_inexact('sin', x))
@partial(jit, inline=True)
def cos(x: ArrayLike, /) -> Array:
"""Compute a trigonometric cosine of each element of input.
JAX implementation of :obj:`numpy.cos`.
Args:
x: scalar or array. Angle in radians.
Returns:
An array containing the cosine of each element in ``x``, promotes to inexact
dtype.
See also:
- :func:`jax.numpy.sin`: Computes a trigonometric sine of each element of input.
- :func:`jax.numpy.tan`: Computes a trigonometric tangent of each element of
input.
- :func:`jax.numpy.arccos` and :func:`jax.numpy.acos`: Computes the inverse of
trigonometric cosine of each element of input.
Examples:
>>> pi = jnp.pi
>>> x = jnp.array([pi/4, pi/2, 3*pi/4, 5*pi/6])
>>> with jnp.printoptions(precision=3, suppress=True):
... print(jnp.cos(x))
[ 0.707 -0. -0.707 -0.866]
"""
return lax.cos(*promote_args_inexact('cos', x))
@partial(jit, inline=True)
def tan(x: ArrayLike, /) -> Array:
"""Compute a trigonometric tangent of each element of input.
JAX implementation of :obj:`numpy.tan`.
Args:
x: scalar or array. Angle in radians.
Returns:
An array containing the tangent of each element in ``x``, promotes to inexact
dtype.
See also:
- :func:`jax.numpy.sin`: Computes a trigonometric sine of each element of input.
- :func:`jax.numpy.cos`: Computes a trigonometric cosine of each element of
input.
- :func:`jax.numpy.arctan` and :func:`jax.numpy.atan`: Computes the inverse of
trigonometric tangent of each element of input.
Examples:
>>> pi = jnp.pi
>>> x = jnp.array([0, pi/6, pi/4, 3*pi/4, 5*pi/6])
>>> with jnp.printoptions(precision=3, suppress=True):
... print(jnp.tan(x))
[ 0. 0.577 1. -1. -0.577]
"""
return lax.tan(*promote_args_inexact('tan', x))
@partial(jit, inline=True)
def arcsin(x: ArrayLike, /) -> Array:
r"""Compute element-wise inverse of trigonometric sine of input.
JAX implementation of :obj:`numpy.arcsin`.
Args:
x: input array or scalar.
Returns:
An array containing the inverse trigonometric sine of each element of ``x``
in radians in the range ``[-pi/2, pi/2]``, promoting to inexact dtype.
Note:
- ``jnp.arcsin`` returns ``nan`` when ``x`` is real-valued and not in the closed
interval ``[-1, 1]``.
- ``jnp.arcsin`` follows the branch cut convention of :obj:`numpy.arcsin` for
complex inputs.
See also:
- :func:`jax.numpy.sin`: Computes a trigonometric sine of each element of input.
- :func:`jax.numpy.arccos` and :func:`jax.numpy.acos`: Computes the inverse of
trigonometric cosine of each element of input.
- :func:`jax.numpy.arctan` and :func:`jax.numpy.atan`: Computes the inverse of
trigonometric tangent of each element of input.
Examples:
>>> x = jnp.array([-2, -1, -0.5, 0, 0.5, 1, 2])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arcsin(x)
Array([ nan, -1.571, -0.524, 0. , 0.524, 1.571, nan], dtype=float32)
For complex-valued inputs:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arcsin(3+4j)
Array(0.634+2.306j, dtype=complex64, weak_type=True)
"""
return lax.asin(*promote_args_inexact('arcsin', x))
@partial(jit, inline=True)
def arccos(x: ArrayLike, /) -> Array:
"""Compute element-wise inverse of trigonometric cosine of input.
JAX implementation of :obj:`numpy.arccos`.
Args:
x: input array or scalar.
Returns:
An array containing the inverse trigonometric cosine of each element of ``x``
in radians in the range ``[0, pi]``, promoting to inexact dtype.
Note:
- ``jnp.arccos`` returns ``nan`` when ``x`` is real-valued and not in the closed
interval ``[-1, 1]``.
- ``jnp.arccos`` follows the branch cut convention of :obj:`numpy.arccos` for
complex inputs.
See also:
- :func:`jax.numpy.cos`: Computes a trigonometric cosine of each element of
input.
- :func:`jax.numpy.arcsin` and :func:`jax.numpy.asin`: Computes the inverse of
trigonometric sine of each element of input.
- :func:`jax.numpy.arctan` and :func:`jax.numpy.atan`: Computes the inverse of
trigonometric tangent of each element of input.
Examples:
>>> x = jnp.array([-2, -1, -0.5, 0, 0.5, 1, 2])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arccos(x)
Array([ nan, 3.142, 2.094, 1.571, 1.047, 0. , nan], dtype=float32)
For complex inputs:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arccos(4-1j)
Array(0.252+2.097j, dtype=complex64, weak_type=True)
"""
return lax.acos(*promote_args_inexact('arccos', x))
@partial(jit, inline=True)
def arctan(x: ArrayLike, /) -> Array:
"""Compute element-wise inverse of trigonometric tangent of input.
JAX implement of :obj:`numpy.arctan`.
Args:
x: input array or scalar.
Returns:
An array containing the inverse trigonometric tangent of each element ``x``
in radians in the range ``[-pi/2, pi/2]``, promoting to inexact dtype.
Note:
``jnp.arctan`` follows the branch cut convention of :obj:`numpy.arctan` for
complex inputs.
See also:
- :func:`jax.numpy.tan`: Computes a trigonometric tangent of each element of
input.
- :func:`jax.numpy.arcsin` and :func:`jax.numpy.asin`: Computes the inverse of
trigonometric sine of each element of input.
- :func:`jax.numpy.arccos` and :func:`jax.numpy.atan`: Computes the inverse of
trigonometric cosine of each element of input.
Examples:
>>> x = jnp.array([-jnp.inf, -20, -1, 0, 1, 20, jnp.inf])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arctan(x)
Array([-1.571, -1.521, -0.785, 0. , 0.785, 1.521, 1.571], dtype=float32)
For complex-valued inputs:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arctan(2+7j)
Array(1.532+0.133j, dtype=complex64, weak_type=True)
"""
return lax.atan(*promote_args_inexact('arctan', x))
@partial(jit, inline=True)
def sinh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise hyperbolic sine of input.
JAX implementation of :obj:`numpy.sinh`.
The hyperbolic sine is defined by:
.. math::
sinh(x) = \frac{e^x - e^{-x}}{2}
Args:
x: input array or scalar.
Returns:
An array containing the hyperbolic sine of each element of ``x``, promoting
to inexact dtype.
Note:
``jnp.sinh`` is equivalent to computing ``-1j * jnp.sin(1j * x)``.
See also:
- :func:`jax.numpy.cosh`: Computes the element-wise hyperbolic cosine of the
input.
- :func:`jax.numpy.tanh`: Computes the element-wise hyperbolic tangent of the
input.
- :func:`jax.numpy.arcsinh`: Computes the element-wise inverse of hyperbolic
sine of the input.
Examples:
>>> x = jnp.array([[-2, 3, 5],
... [0, -1, 4]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.sinh(x)
Array([[-3.627, 10.018, 74.203],
[ 0. , -1.175, 27.29 ]], dtype=float32)
>>> with jnp.printoptions(precision=3, suppress=True):
... -1j * jnp.sin(1j * x)
Array([[-3.627+0.j, 10.018-0.j, 74.203-0.j],
[ 0. -0.j, -1.175+0.j, 27.29 -0.j]], dtype=complex64, weak_type=True)
For complex-valued input:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.sinh(3-2j)
Array(-4.169-9.154j, dtype=complex64, weak_type=True)
>>> with jnp.printoptions(precision=3, suppress=True):
... -1j * jnp.sin(1j * (3-2j))
Array(-4.169-9.154j, dtype=complex64, weak_type=True)
"""
return lax.sinh(*promote_args_inexact('sinh', x))
@partial(jit, inline=True)
def cosh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise hyperbolic cosine of input.
JAX implementation of :obj:`numpy.cosh`.
The hyperbolic cosine is defined by:
.. math::
cosh(x) = \frac{e^x + e^{-x}}{2}
Args:
x: input array or scalar.
Returns:
An array containing the hyperbolic cosine of each element of ``x``, promoting
to inexact dtype.
Note:
``jnp.cosh`` is equivalent to computing ``jnp.cos(1j * x)``.
See also:
- :func:`jax.numpy.sinh`: Computes the element-wise hyperbolic sine of the input.
- :func:`jax.numpy.tanh`: Computes the element-wise hyperbolic tangent of the
input.
- :func:`jax.numpy.arccosh`: Computes the element-wise inverse of hyperbolic
cosine of the input.
Examples:
>>> x = jnp.array([[3, -1, 0],
... [4, 7, -5]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.cosh(x)
Array([[ 10.068, 1.543, 1. ],
[ 27.308, 548.317, 74.21 ]], dtype=float32)
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.cos(1j * x)
Array([[ 10.068+0.j, 1.543+0.j, 1. +0.j],
[ 27.308+0.j, 548.317+0.j, 74.21 +0.j]], dtype=complex64, weak_type=True)
For complex-valued input:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.cosh(5+1j)
Array(40.096+62.44j, dtype=complex64, weak_type=True)
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.cos(1j * (5+1j))
Array(40.096+62.44j, dtype=complex64, weak_type=True)
"""
return lax.cosh(*promote_args_inexact('cosh', x))
@partial(jit, inline=True)
def arcsinh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise inverse of hyperbolic sine of input.
JAX implementation of :obj:`numpy.arcsinh`.
The inverse of hyperbolic sine is defined by:
.. math::
arcsinh(x) = \ln(x + \sqrt{1 + x^2})
Args:
x: input array or scalar.
Returns:
An array of same shape as ``x`` containing the inverse of hyperbolic sine of
each element of ``x``, promoting to inexact dtype.
Note:
- ``jnp.arcsinh`` returns ``nan`` for values outside the range ``(-inf, inf)``.
- ``jnp.arcsinh`` follows the branch cut convention of :obj:`numpy.arcsinh`
for complex inputs.
See also:
- :func:`jax.numpy.sinh`: Computes the element-wise hyperbolic sine of the input.
- :func:`jax.numpy.arccosh`: Computes the element-wise inverse of hyperbolic
cosine of the input.
- :func:`jax.numpy.arctanh`: Computes the element-wise inverse of hyperbolic
tangent of the input.
Examples:
>>> x = jnp.array([[-2, 3, 1],
... [4, 9, -5]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arcsinh(x)
Array([[-1.444, 1.818, 0.881],
[ 2.095, 2.893, -2.312]], dtype=float32)
For complex-valued inputs:
>>> x1 = jnp.array([4-3j, 2j])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arcsinh(x1)
Array([2.306-0.634j, 1.317+1.571j], dtype=complex64)
"""
return lax.asinh(*promote_args_inexact('arcsinh', x))
@jit
def arccosh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise inverse of hyperbolic cosine of input.
JAX implementation of :obj:`numpy.arccosh`.
The inverse of hyperbolic cosine is defined by:
.. math::
arccosh(x) = \ln(x + \sqrt{x^2 - 1})
Args:
x: input array or scalar.
Returns:
An array of same shape as ``x`` containing the inverse of hyperbolic cosine
of each element of ``x``, promoting to inexact dtype.
Note:
- ``jnp.arccosh`` returns ``nan`` for real-values in the range ``[-inf, 1)``.
- ``jnp.arccosh`` follows the branch cut convention of :obj:`numpy.arccosh`
for complex inputs.
See also:
- :func:`jax.numpy.cosh`: Computes the element-wise hyperbolic cosine of the
input.
- :func:`jax.numpy.arcsinh`: Computes the element-wise inverse of hyperbolic
sine of the input.
- :func:`jax.numpy.arctanh`: Computes the element-wise inverse of hyperbolic
tangent of the input.
Examples:
>>> x = jnp.array([[1, 3, -4],
... [-5, 2, 7]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arccosh(x)
Array([[0. , 1.763, nan],
[ nan, 1.317, 2.634]], dtype=float32)
For complex-valued input:
>>> x1 = jnp.array([-jnp.inf+0j, 1+2j, -5+0j])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arccosh(x1)
Array([ inf+3.142j, 1.529+1.144j, 2.292+3.142j], dtype=complex64)
"""
# Note: arccosh is multi-valued for complex input, and lax.acosh
# uses a different convention than np.arccosh.
result = lax.acosh(*promote_args_inexact("arccosh", x))
if dtypes.issubdtype(result.dtype, np.complexfloating):
result = _where(real(result) < 0, lax.neg(result), result)
return result
[docs]@partial(jit, inline=True)
def tanh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise hyperbolic tangent of input.
JAX implementation of :obj:`numpy.tanh`.
The hyperbolic tangent is defined by:
.. math::
tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
Args:
x: input array or scalar.
Returns:
An array containing the hyperbolic tangent of each element of ``x``, promoting
to inexact dtype.
Note:
``jnp.tanh`` is equivalent to computing ``-1j * jnp.tan(1j * x)``.
See also:
- :func:`jax.numpy.sinh`: Computes the element-wise hyperbolic sine of the input.
- :func:`jax.numpy.cosh`: Computes the element-wise hyperbolic cosine of the
input.
- :func:`jax.numpy.arctanh`: Computes the element-wise inverse of hyperbolic
tangent of the input.
Examples:
>>> x = jnp.array([[-1, 0, 1],
... [3, -2, 5]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.tanh(x)
Array([[-0.762, 0. , 0.762],
[ 0.995, -0.964, 1. ]], dtype=float32)
>>> with jnp.printoptions(precision=3, suppress=True):
... -1j * jnp.tan(1j * x)
Array([[-0.762+0.j, 0. -0.j, 0.762-0.j],
[ 0.995-0.j, -0.964+0.j, 1. -0.j]], dtype=complex64, weak_type=True)
For complex-valued input:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.tanh(2-5j)
Array(1.031+0.021j, dtype=complex64, weak_type=True)
>>> with jnp.printoptions(precision=3, suppress=True):
... -1j * jnp.tan(1j * (2-5j))
Array(1.031+0.021j, dtype=complex64, weak_type=True)
"""
return lax.tanh(*promote_args_inexact('tanh', x))
@partial(jit, inline=True)
def arctanh(x: ArrayLike, /) -> Array:
r"""Calculate element-wise inverse of hyperbolic tangent of input.
JAX implementation of :obj:`numpy.arctanh`.
The inverse of hyperbolic tangent is defined by:
.. math::
arctanh(x) = \frac{1}{2} [\ln(1 + x) - \ln(1 - x)]
Args:
x: input array or scalar.
Returns:
An array of same shape as ``x`` containing the inverse of hyperbolic tangent
of each element of ``x``, promoting to inexact dtype.
Note:
- ``jnp.arctanh`` returns ``nan`` for real-values outside the range ``[-1, 1]``.
- ``jnp.arctanh`` follows the branch cut convention of :obj:`numpy.arctanh`
for complex inputs.
See also:
- :func:`jax.numpy.tanh`: Computes the element-wise hyperbolic tangent of the
input.
- :func:`jax.numpy.arcsinh`: Computes the element-wise inverse of hyperbolic
sine of the input.
- :func:`jax.numpy.arccosh`: Computes the element-wise inverse of hyperbolic
cosine of the input.
Examples:
>>> x = jnp.array([-2, -1, -0.5, 0, 0.5, 1, 2])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arctanh(x)
Array([ nan, -inf, -0.549, 0. , 0.549, inf, nan], dtype=float32)
For complex-valued input:
>>> x1 = jnp.array([-2+0j, 3+0j, 4-1j])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.arctanh(x1)
Array([-0.549+1.571j, 0.347+1.571j, 0.239-1.509j], dtype=complex64)
"""
return lax.atanh(*promote_args_inexact('arctanh', x))
@partial(jit, inline=True)
def sqrt(x: ArrayLike, /) -> Array:
"""Calculates element-wise non-negative square root of the input array.
JAX implementation of :obj:`numpy.sqrt`.
Args:
x: input array or scalar.
Returns:
An array containing the non-negative square root of the elements of ``x``.
Note:
- For real-valued negative inputs, ``jnp.sqrt`` produces a ``nan`` output.
- For complex-valued negative inputs, ``jnp.sqrt`` produces a ``complex`` output.
See also:
- :func:`jax.numpy.square`: Calculates the element-wise square of the input.
- :func:`jax.numpy.power`: Calculates the element-wise base ``x1`` exponential
of ``x2``.
Examples:
>>> x = jnp.array([-8-6j, 1j, 4])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.sqrt(x)
Array([1. -3.j , 0.707+0.707j, 2. +0.j ], dtype=complex64)
>>> jnp.sqrt(-1)
Array(nan, dtype=float32, weak_type=True)
"""
return lax.sqrt(*promote_args_inexact('sqrt', x))
@partial(jit, inline=True)
def cbrt(x: ArrayLike, /) -> Array:
"""Calculates element-wise cube root of the input array.
JAX implementation of :obj:`numpy.cbrt`.
Args:
x: input array or scalar. ``complex`` dtypes are not supported.
Returns:
An array containing the cube root of the elements of ``x``.
See also:
- :func:`jax.numpy.sqrt`: Calculates the element-wise non-negative square root
of the input.
- :func:`jax.numpy.square`: Calculates the element-wise square of the input.
Examples:
>>> x = jnp.array([[216, 125, 64],
... [-27, -8, -1]])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.cbrt(x)
Array([[ 6., 5., 4.],
[-3., -2., -1.]], dtype=float32)
"""
return lax.cbrt(*promote_args_inexact('cbrt', x))
@partial(jit, inline=True)
def _add(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Add two arrays element-wise.
JAX implementation of :obj:`numpy.add`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``+`` operator for
JAX arrays.
Args:
x, y: arrays to add. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise addition.
Examples:
Calling ``add`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.add(x, 10)
Array([10, 11, 12, 13], dtype=int32)
Calling ``add`` via the ``+`` operator:
>>> x + 10
Array([10, 11, 12, 13], dtype=int32)
"""
x, y = promote_args("add", x, y)
return lax.add(x, y) if x.dtype != bool else lax.bitwise_or(x, y)
@partial(jit, inline=True)
def _multiply(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Multiply two arrays element-wise.
JAX implementation of :obj:`numpy.multiply`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``*`` operator for
JAX arrays.
Args:
x, y: arrays to multiply. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise multiplication.
Examples:
Calling ``multiply`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.multiply(x, 10)
Array([ 0, 10, 20, 30], dtype=int32)
Calling ``multiply`` via the ``*`` operator:
>>> x * 10
Array([ 0, 10, 20, 30], dtype=int32)
"""
x, y = promote_args("multiply", x, y)
return lax.mul(x, y) if x.dtype != bool else lax.bitwise_and(x, y)
@partial(jit, inline=True)
def _bitwise_and(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the bitwise AND operation elementwise.
JAX implementation of :obj:`numpy.bitwise_and`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``&`` operator for
JAX arrays.
Args:
x, y: integer or boolean arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise bitwise AND.
Examples:
Calling ``bitwise_and`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.bitwise_and(x, 1)
Array([0, 1, 0, 1], dtype=int32)
Calling ``bitwise_and`` via the ``&`` operator:
>>> x & 1
Array([0, 1, 0, 1], dtype=int32)
"""
return lax.bitwise_and(*promote_args("bitwise_and", x, y))
@partial(jit, inline=True)
def _bitwise_or(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the bitwise OR operation elementwise.
JAX implementation of :obj:`numpy.bitwise_or`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``|`` operator for
JAX arrays.
Args:
x, y: integer or boolean arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise bitwise OR.
Examples:
Calling ``bitwise_or`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.bitwise_or(x, 1)
Array([1, 1, 3, 3], dtype=int32)
Calling ``bitwise_or`` via the ``|`` operator:
>>> x | 1
Array([1, 1, 3, 3], dtype=int32)
"""
return lax.bitwise_or(*promote_args("bitwise_or", x, y))
@partial(jit, inline=True)
def _bitwise_xor(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the bitwise XOR operation elementwise.
JAX implementation of :obj:`numpy.bitwise_xor`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``^`` operator for
JAX arrays.
Args:
x, y: integer or boolean arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise bitwise XOR.
Examples:
Calling ``bitwise_xor`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.bitwise_xor(x, 1)
Array([1, 0, 3, 2], dtype=int32)
Calling ``bitwise_xor`` via the ``^`` operator:
>>> x ^ 1
Array([1, 0, 3, 2], dtype=int32)
"""
return lax.bitwise_xor(*promote_args("bitwise_xor", x, y))
@partial(jit, inline=True)
def left_shift(x: ArrayLike, y: ArrayLike, /) -> Array:
r"""Shift bits of ``x`` to left by the amount specified in ``y``, element-wise.
JAX implementation of :obj:`numpy.left_shift`.
Args:
x: Input array, must be integer-typed.
y: The amount of bits to shift each element in ``x`` to the left, only accepts
integer subtypes. ``x`` and ``y`` must either have same shape or be broadcast
compatible.
Returns:
An array containing the left shifted elements of ``x`` by the amount specified
in ``y``, with the same shape as the broadcasted shape of ``x`` and ``y``.
Note:
Left shifting ``x`` by ``y`` is equivalent to ``x * (2**y)`` within the
bounds of the dtypes involved.
See also:
- :func:`jax.numpy.right_shift`: and :func:`jax.numpy.bitwise_right_shift`:
Shifts the bits of ``x1`` to right by the amount specified in ``x2``,
element-wise.
- :func:`jax.numpy.bitwise_left_shift`: Alias of :func:`jax.left_shift`.
Examples:
>>> def print_binary(x):
... return [bin(int(val)) for val in x]
>>> x1 = jnp.arange(5)
>>> x1
Array([0, 1, 2, 3, 4], dtype=int32)
>>> print_binary(x1)
['0b0', '0b1', '0b10', '0b11', '0b100']
>>> x2 = 1
>>> result = jnp.left_shift(x1, x2)
>>> result
Array([0, 2, 4, 6, 8], dtype=int32)
>>> print_binary(result)
['0b0', '0b10', '0b100', '0b110', '0b1000']
>>> x3 = 4
>>> print_binary([x3])
['0b100']
>>> x4 = jnp.array([1, 2, 3, 4])
>>> result1 = jnp.left_shift(x3, x4)
>>> result1
Array([ 8, 16, 32, 64], dtype=int32)
>>> print_binary(result1)
['0b1000', '0b10000', '0b100000', '0b1000000']
"""
return lax.shift_left(*promote_args_numeric("left_shift", x, y))
@partial(jit, inline=True)
def bitwise_left_shift(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.left_shift`."""
return lax.shift_left(*promote_args_numeric("bitwise_left_shift", x, y))
@partial(jit, inline=True)
def equal(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Returns element-wise truth value of ``x == y``.
JAX implementation of :obj:`numpy.equal`. This function provides the implementation
of the ``==`` operator for JAX arrays.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` should either have same shape or be
broadcast compatible.
Returns:
A boolean array containing ``True`` where the elements of ``x == y`` and
``False`` otherwise.
See also:
- :func:`jax.numpy.not_equal`: Returns element-wise truth value of ``x != y``.
- :func:`jax.numpy.greater_equal`: Returns element-wise truth value of
``x >= y``.
- :func:`jax.numpy.less_equal`: Returns element-wise truth value of ``x <= y``.
- :func:`jax.numpy.greater`: Returns element-wise truth value of ``x > y``.
- :func:`jax.numpy.less`: Returns element-wise truth value of ``x < y``.
Examples:
>>> jnp.equal(0., -0.)
Array(True, dtype=bool, weak_type=True)
>>> jnp.equal(1, 1.)
Array(True, dtype=bool, weak_type=True)
>>> jnp.equal(5, jnp.array(5))
Array(True, dtype=bool, weak_type=True)
>>> jnp.equal(2, -2)
Array(False, dtype=bool, weak_type=True)
>>> x = jnp.array([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]])
>>> y = jnp.array([1, 5, 9])
>>> jnp.equal(x, y)
Array([[ True, False, False],
[False, True, False],
[False, False, True]], dtype=bool)
>>> x == y
Array([[ True, False, False],
[False, True, False],
[False, False, True]], dtype=bool)
"""
return lax.eq(*promote_args("equal", x, y))
@partial(jit, inline=True)
def not_equal(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Returns element-wise truth value of ``x != y``.
JAX implementation of :obj:`numpy.not_equal`. This function provides the
implementation of the ``!=`` operator for JAX arrays.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` should either have same shape or be
broadcast compatible.
Returns:
A boolean array containing ``True`` where the elements of ``x != y`` and
``False`` otherwise.
See also:
- :func:`jax.numpy.equal`: Returns element-wise truth value of ``x == y``.
- :func:`jax.numpy.greater_equal`: Returns element-wise truth value of
``x >= y``.
- :func:`jax.numpy.less_equal`: Returns element-wise truth value of ``x <= y``.
- :func:`jax.numpy.greater`: Returns element-wise truth value of ``x > y``.
- :func:`jax.numpy.less`: Returns element-wise truth value of ``x < y``.
Examples:
>>> jnp.not_equal(0., -0.)
Array(False, dtype=bool, weak_type=True)
>>> jnp.not_equal(-2, 2)
Array(True, dtype=bool, weak_type=True)
>>> jnp.not_equal(1, 1.)
Array(False, dtype=bool, weak_type=True)
>>> jnp.not_equal(5, jnp.array(5))
Array(False, dtype=bool, weak_type=True)
>>> x = jnp.array([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]])
>>> y = jnp.array([1, 5, 9])
>>> jnp.not_equal(x, y)
Array([[False, True, True],
[ True, False, True],
[ True, True, False]], dtype=bool)
>>> x != y
Array([[False, True, True],
[ True, False, True],
[ True, True, False]], dtype=bool)
"""
return lax.ne(*promote_args("not_equal", x, y))
@partial(jit, inline=True)
def _subtract(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Subtract two arrays element-wise.
JAX implementation of :obj:`numpy.subtract`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
This function provides the implementation of the ``-`` operator for
JAX arrays.
Args:
x, y: arrays to subtract. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise subtraction.
Examples:
Calling ``subtract`` explicitly:
>>> x = jnp.arange(4)
>>> jnp.subtract(x, 10)
Array([-10, -9, -8, -7], dtype=int32)
Calling ``subtract`` via the ``-`` operator:
>>> x - 10
Array([-10, -9, -8, -7], dtype=int32)
"""
return lax.sub(*promote_args("subtract", x, y))
@implements(np.arctan2, module='numpy')
@partial(jit, inline=True)
def arctan2(x1: ArrayLike, x2: ArrayLike, /) -> Array:
return lax.atan2(*promote_args_inexact("arctan2", x1, x2))
@partial(jit, inline=True)
def minimum(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise minimum of the input arrays.
JAX implementation of :obj:`numpy.minimum`.
Args:
x: input array or scalar.
y: input array or scalar. Both ``x`` and ``y`` should either have same shape
or be broadcast compatible.
Returns:
An array containing the element-wise minimum of ``x`` and ``y``.
Note:
For each pair of elements, ``jnp.minimum`` returns:
- smaller of the two if both elements are finite numbers.
- ``nan`` if one element is ``nan``.
See also:
- :func:`jax.numpy.maximum`: Returns element-wise maximum of the input arrays.
- :func:`jax.numpy.fmin`: Returns element-wise minimum of the input arrays,
ignoring NaNs.
- :func:`jax.numpy.amin`: Returns the minimum of array elements along a given
axis.
- :func:`jax.numpy.nanmin`: Returns the minimum of the array elements along
a given axis, ignoring NaNs.
Examples:
Inputs with ``x.shape == y.shape``:
>>> x = jnp.array([2, 3, 5, 1])
>>> y = jnp.array([-3, 6, -4, 7])
>>> jnp.minimum(x, y)
Array([-3, 3, -4, 1], dtype=int32)
Inputs having broadcast compatibility:
>>> x1 = jnp.array([[1, 5, 2],
... [-3, 4, 7]])
>>> y1 = jnp.array([-2, 3, 6])
>>> jnp.minimum(x1, y1)
Array([[-2, 3, 2],
[-3, 3, 6]], dtype=int32)
Inputs with ``nan``:
>>> nan = jnp.nan
>>> x2 = jnp.array([[2.5, nan, -2],
... [nan, 5, 6],
... [-4, 3, 7]])
>>> y2 = jnp.array([1, nan, 5])
>>> jnp.minimum(x2, y2)
Array([[ 1., nan, -2.],
[nan, nan, 5.],
[-4., nan, 5.]], dtype=float32)
"""
return lax.min(*promote_args("minimum", x, y))
@partial(jit, inline=True)
def maximum(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise maximum of the input arrays.
JAX implementation of :obj:`numpy.maximum`.
Args:
x: input array or scalar.
y: input array or scalar. Both ``x`` and ``y`` should either have same shape
or be broadcast compatible.
Returns:
An array containing the element-wise maximum of ``x`` and ``y``.
Note:
For each pair of elements, ``jnp.maximum`` returns:
- larger of the two if both elements are finite numbers.
- ``nan`` if one element is ``nan``.
See also:
- :func:`jax.numpy.minimum`: Returns element-wise minimum of the input
arrays.
- :func:`jax.numpy.fmax`: Returns element-wise maximum of the input arrays,
ignoring NaNs.
- :func:`jax.numpy.amax`: Retruns the maximum of array elements along a given
axis.
- :func:`jax.numpy.nanmax`: Returns the maximum of the array elements along
a given axis, ignoring NaNs.
Examples:
Inputs with ``x.shape == y.shape``:
>>> x = jnp.array([1, -5, 3, 2])
>>> y = jnp.array([-2, 4, 7, -6])
>>> jnp.maximum(x, y)
Array([1, 4, 7, 2], dtype=int32)
Inputs with broadcast compatibility:
>>> x1 = jnp.array([[-2, 5, 7, 4],
... [1, -6, 3, 8]])
>>> y1 = jnp.array([-5, 3, 6, 9])
>>> jnp.maximum(x1, y1)
Array([[-2, 5, 7, 9],
[ 1, 3, 6, 9]], dtype=int32)
Inputs having ``nan``:
>>> nan = jnp.nan
>>> x2 = jnp.array([nan, -3, 9])
>>> y2 = jnp.array([[4, -2, nan],
... [-3, -5, 10]])
>>> jnp.maximum(x2, y2)
Array([[nan, -2., nan],
[nan, -3., 10.]], dtype=float32)
"""
return lax.max(*promote_args("maximum", x, y))
@partial(jit, inline=True)
def float_power(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Calculate element-wise base ``x`` exponential of ``y``.
JAX implementation of :obj:`numpy.float_power`.
Args:
x: scalar or array. Specifies the bases.
y: scalar or array. Specifies the exponents. ``x`` and ``y`` should either
have same shape or be broadcast compatible.
Returns:
An array containing the base ``x`` exponentials of ``y``, promoting to the
inexact dtype.
See also:
- :func:`jax.numpy.exp`: Calculates element-wise exponential of the input.
- :func:`jax.numpy.exp2`: Calculates base-2 exponential of each element of
the input.
Examples:
Inputs with same shape:
>>> x = jnp.array([3, 1, -5])
>>> y = jnp.array([2, 4, -1])
>>> jnp.float_power(x, y)
Array([ 9. , 1. , -0.2], dtype=float32)
Inputs with broacast compatibility:
>>> x1 = jnp.array([[2, -4, 1],
... [-1, 2, 3]])
>>> y1 = jnp.array([-2, 1, 4])
>>> jnp.float_power(x1, y1)
Array([[ 0.25, -4. , 1. ],
[ 1. , 2. , 81. ]], dtype=float32)
``jnp.float_power`` produces ``nan`` for negative values raised to a non-integer
values.
>>> jnp.float_power(-3, 1.7)
Array(nan, dtype=float32, weak_type=True)
"""
return lax.pow(*promote_args_inexact("float_power", x, y))
@partial(jit, inline=True)
def nextafter(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise next floating point value after ``x`` towards ``y``.
JAX implementation of :obj:`numpy.nextafter`.
Args:
x: scalar or array. Specifies the value after which the next number is found.
y: scalar or array. Specifies the direction towards which the next number is
found. ``x`` and ``y`` should either have same shape or be broadcast
compatible.
Returns:
An array containing the next representable number of ``x`` in the direction
of ``y``.
Examples:
>>> jnp.nextafter(2, 1) # doctest: +SKIP
Array(1.9999999, dtype=float32, weak_type=True)
>>> x = jnp.array([3, -2, 1])
>>> y = jnp.array([2, -1, 2])
>>> jnp.nextafter(x, y) # doctest: +SKIP
Array([ 2.9999998, -1.9999999, 1.0000001], dtype=float32)
"""
return lax.nextafter(*promote_args_inexact("nextafter", x, y))
@partial(jit, inline=True)
def spacing(x: ArrayLike, /) -> Array:
"""Return the spacing between ``x`` and the next adjacent number.
JAX implementation of :func:`numpy.spacing`.
Args:
x: real-valued array. Integer or boolean types will be cast to float.
Returns:
Array of same shape as ``x`` containing spacing between each entry of
``x`` and its closest adjacent value.
See also:
- :func:`jax.numpy.nextafter`: find the next representable value.
Examples:
>>> x = jnp.array([0.0, 0.25, 0.5, 0.75, 1.0], dtype='float32')
>>> jnp.spacing(x)
Array([1.4012985e-45, 2.9802322e-08, 5.9604645e-08, 5.9604645e-08,
1.1920929e-07], dtype=float32)
For ``x = 1``, the spacing is equal to the ``eps`` value given by
:class:`jax.numpy.finfo`:
>>> x = jnp.float32(1)
>>> jnp.spacing(x) == jnp.finfo(x.dtype).eps
Array(True, dtype=bool)
"""
arr, = promote_args_inexact("spacing", x)
if dtypes.isdtype(arr.dtype, "complex floating"):
raise ValueError("jnp.spacing is not defined for complex inputs.")
inf = _lax_const(arr, np.inf)
smallest_subnormal = dtypes.finfo(arr.dtype).smallest_subnormal
# Numpy's behavior seems to depend on dtype
if arr.dtype == 'float16':
return lax.nextafter(arr, inf) - arr
else:
result = lax.nextafter(arr, copysign(inf, arr)) - arr
return _where(result == 0, copysign(smallest_subnormal, arr), result)
# Logical ops
@partial(jit, inline=True)
def _logical_and(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the logical AND operation elementwise.
JAX implementation of :obj:`numpy.logical_and`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
Args:
x, y: input arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise logical AND.
Examples:
>>> x = jnp.arange(4)
>>> jnp.logical_and(x, 1)
Array([False, True, True, True], dtype=bool)
"""
return lax.bitwise_and(*map(_to_bool, promote_args("logical_and", x, y)))
@partial(jit, inline=True)
def _logical_or(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the logical OR operation elementwise.
JAX implementation of :obj:`numpy.logical_or`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
Args:
x, y: input arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise logical OR.
Examples:
>>> x = jnp.arange(4)
>>> jnp.logical_or(x, 1)
Array([ True, True, True, True], dtype=bool)
"""
return lax.bitwise_or(*map(_to_bool, promote_args("logical_or", x, y)))
@partial(jit, inline=True)
def _logical_xor(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Compute the logical XOR operation elementwise.
JAX implementation of :obj:`numpy.logical_xor`. This is a universal function,
and supports the additional APIs described at :class:`jax.numpy.ufunc`.
Args:
x, y: input arrays. Must be broadcastable to a common shape.
Returns:
Array containing the result of the element-wise logical XOR.
Examples:
>>> x = jnp.arange(4)
>>> jnp.logical_xor(x, 1)
Array([ True, False, False, False], dtype=bool)
"""
return lax.bitwise_xor(*map(_to_bool, promote_args("logical_xor", x, y)))
@partial(jit, inline=True)
def logical_not(x: ArrayLike, /) -> Array:
"""Compute NOT bool(x) element-wise.
JAX implementation of :func:`numpy.logical_not`.
Args:
x: input array of any dtype.
Returns:
A boolean array that computes NOT bool(x) element-wise
See also:
- :func:`jax.numpy.invert` or :func:`jax.numpy.bitwise_invert`: bitwise NOT operation
Examples:
Compute NOT x element-wise on a boolean array:
>>> x = jnp.array([True, False, True])
>>> jnp.logical_not(x)
Array([False, True, False], dtype=bool)
For boolean input, this is equivalent to :func:`~jax.numpy.invert`, which implements
the unary ``~`` operator:
>>> ~x
Array([False, True, False], dtype=bool)
For non-boolean input, the input of :func:`logical_not` is implicitly cast to boolean:
>>> x = jnp.array([-1, 0, 1])
>>> jnp.logical_not(x)
Array([False, True, False], dtype=bool)
"""
return lax.bitwise_not(*map(_to_bool, promote_args("logical_not", x)))
# Comparison ops
def _complex_comparison(lax_op: Callable[[ArrayLike, ArrayLike], Array],
x: Array, y: Array):
if dtypes.issubdtype(x.dtype, np.complexfloating):
return lax.select(lax.eq(x.real, y.real),
lax_op(x.imag, y.imag),
lax_op(x.real, y.real))
return lax_op(x, y)
@partial(jit, inline=True)
def greater_equal(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise truth value of ``x >= y``.
JAX implementation of :obj:`numpy.greater_equal`.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` must either have same shape or be
broadcast compatible.
Returns:
An array containing boolean values. ``True`` if the elements of ``x >= y``,
and ``False`` otherwise.
See also:
- :func:`jax.numpy.less_equal`: Returns element-wise truth value of ``x <= y``.
- :func:`jax.numpy.greater`: Returns element-wise truth value of ``x > y``.
- :func:`jax.numpy.less`: Returns element-wise truth value of ``x < y``.
Examples:
Scalar inputs:
>>> jnp.greater_equal(4, 7)
Array(False, dtype=bool, weak_type=True)
Inputs with same shape:
>>> x = jnp.array([2, 5, -1])
>>> y = jnp.array([-6, 4, 3])
>>> jnp.greater_equal(x, y)
Array([ True, True, False], dtype=bool)
Inputs with broadcast compatibility:
>>> x1 = jnp.array([[3, -1, 4],
... [5, 9, -6]])
>>> y1 = jnp.array([-1, 4, 2])
>>> jnp.greater_equal(x1, y1)
Array([[ True, False, True],
[ True, True, False]], dtype=bool)
"""
return _complex_comparison(lax.ge, *promote_args("greater_equal", x, y))
@partial(jit, inline=True)
def greater(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise truth value of ``x > y``.
JAX implementation of :obj:`numpy.greater`.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` must either have same shape or be
broadcast compatible.
Returns:
An array containing boolean values. ``True`` if the elements of ``x > y``,
and ``False`` otherwise.
See also:
- :func:`jax.numpy.less`: Returns element-wise truth value of ``x < y``.
- :func:`jax.numpy.greater_equal`: Returns element-wise truth value of
``x >= y``.
- :func:`jax.numpy.less_equal`: Returns element-wise truth value of ``x <= y``.
Examples:
Scalar inputs:
>>> jnp.greater(5, 2)
Array(True, dtype=bool, weak_type=True)
Inputs with same shape:
>>> x = jnp.array([5, 9, -2])
>>> y = jnp.array([4, -1, 6])
>>> jnp.greater(x, y)
Array([ True, True, False], dtype=bool)
Inputs with broadcast compatibility:
>>> x1 = jnp.array([[5, -6, 7],
... [-2, 5, 9]])
>>> y1 = jnp.array([-4, 3, 10])
>>> jnp.greater(x1, y1)
Array([[ True, False, False],
[ True, True, False]], dtype=bool)
"""
return _complex_comparison(lax.gt, *promote_args("greater", x, y))
@partial(jit, inline=True)
def less_equal(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise truth value of ``x <= y``.
JAX implementation of :obj:`numpy.less_equal`.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` must have either same shape or be
broadcast compatible.
Returns:
An array containing the boolean values. ``True`` if the elements of ``x <= y``,
and ``False`` otherwise.
See also:
- :func:`jax.numpy.greater_equal`: Returns element-wise truth value of
``x >= y``.
- :func:`jax.numpy.greater`: Returns element-wise truth value of ``x > y``.
- :func:`jax.numpy.less`: Returns element-wise truth value of ``x < y``.
Examples:
Scalar inputs:
>>> jnp.less_equal(6, -2)
Array(False, dtype=bool, weak_type=True)
Inputs with same shape:
>>> x = jnp.array([-4, 1, 7])
>>> y = jnp.array([2, -3, 8])
>>> jnp.less_equal(x, y)
Array([ True, False, True], dtype=bool)
Inputs with broadcast compatibility:
>>> x1 = jnp.array([2, -5, 9])
>>> y1 = jnp.array([[1, -6, 5],
... [-2, 4, -6]])
>>> jnp.less_equal(x1, y1)
Array([[False, False, False],
[False, True, False]], dtype=bool)
"""
return _complex_comparison(lax.le, *promote_args("less_equal", x, y))
@partial(jit, inline=True)
def less(x: ArrayLike, y: ArrayLike, /) -> Array:
"""Return element-wise truth value of ``x < y``.
JAX implementation of :obj:`numpy.less`.
Args:
x: input array or scalar.
y: input array or scalar. ``x`` and ``y`` must either have same shape or be
broadcast compatible.
Returns:
An array containing boolean values. ``True`` if the elements of ``x < y``,
and ``False`` otherwise.
See also:
- :func:`jax.numpy.greater`: Returns element-wise truth value of ``x > y``.
- :func:`jax.numpy.greater_equal`: Returns element-wise truth value of
``x >= y``.
- :func:`jax.numpy.less_equal`: Returns element-wise truth value of ``x <= y``.
Examples:
Scalar inputs:
>>> jnp.less(3, 7)
Array(True, dtype=bool, weak_type=True)
Inputs with same shape:
>>> x = jnp.array([5, 9, -3])
>>> y = jnp.array([1, 6, 4])
>>> jnp.less(x, y)
Array([False, False, True], dtype=bool)
Inputs with broadcast compatibility:
>>> x1 = jnp.array([[2, -4, 6, -8],
... [-1, 5, -3, 7]])
>>> y1 = jnp.array([0, 3, -5, 9])
>>> jnp.less(x1, y1)
Array([[False, True, False, True],
[ True, False, False, True]], dtype=bool)
"""
return _complex_comparison(lax.lt, *promote_args("less", x, y))
# Array API aliases
@partial(jit, inline=True)
def acos(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arccos`"""
return arccos(*promote_args('acos', x))
@partial(jit, inline=True)
def acosh(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arccosh`"""
return arccosh(*promote_args('acosh', x))
@partial(jit, inline=True)
def asin(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arcsin`"""
return arcsin(*promote_args('asin', x))
@partial(jit, inline=True)
def asinh(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arcsinh`"""
return arcsinh(*promote_args('asinh', x))
@partial(jit, inline=True)
def atan(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arctan`"""
return arctan(*promote_args('atan', x))
@partial(jit, inline=True)
def atanh(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arctanh`"""
return arctanh(*promote_args('atanh', x))
@partial(jit, inline=True)
def atan2(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.arctan2`"""
return arctan2(*promote_args('atan2', x1, x2))
@jit
def bitwise_count(x: ArrayLike, /) -> Array:
r"""Counts the number of 1 bits in the binary representation of the absolute value
of each element of ``x``.
JAX implementation of :obj:`numpy.bitwise_count`.
Args:
x: Input array, only accepts integer subtypes
Returns:
An array-like object containing the binary 1 bit counts of the absolute value of
each element in ``x``, with the same shape as ``x`` of dtype uint8.
Examples:
>>> x1 = jnp.array([64, 32, 31, 20])
>>> # 64 = 0b1000000, 32 = 0b100000, 31 = 0b11111, 20 = 0b10100
>>> jnp.bitwise_count(x1)
Array([1, 1, 5, 2], dtype=uint8)
>>> x2 = jnp.array([-16, -7, 7])
>>> # |-16| = 0b10000, |-7| = 0b111, 7 = 0b111
>>> jnp.bitwise_count(x2)
Array([1, 3, 3], dtype=uint8)
>>> x3 = jnp.array([[2, -7],[-9, 7]])
>>> # 2 = 0b10, |-7| = 0b111, |-9| = 0b1001, 7 = 0b111
>>> jnp.bitwise_count(x3)
Array([[1, 3],
[2, 3]], dtype=uint8)
"""
x, = promote_args_numeric("bitwise_count", x)
# Following numpy we take the absolute value and return uint8.
return lax.population_count(abs(x)).astype('uint8')
@partial(jit, inline=True)
def right_shift(x1: ArrayLike, x2: ArrayLike, /) -> Array:
r"""Right shift the bits of ``x1`` to the amount specified in ``x2``.
JAX implementation of :obj:`numpy.right_shift`.
Args:
x1: Input array, only accepts unsigned integer subtypes
x2: The amount of bits to shift each element in ``x1`` to the right, only accepts
integer subtypes
Returns:
An array-like object containing the right shifted elements of ``x1`` by the
amount specified in ``x2``, with the same shape as the broadcasted shape of
``x1`` and ``x2``.
Note:
If ``x1.shape != x2.shape``, they must be compatible for broadcasting to a
shared shape, this shared shape will also be the shape of the output. Right shifting
a scalar x1 by scalar x2 is equivalent to ``x1 // 2**x2``.
Examples:
>>> def print_binary(x):
... return [bin(int(val)) for val in x]
>>> x1 = jnp.array([1, 2, 4, 8])
>>> print_binary(x1)
['0b1', '0b10', '0b100', '0b1000']
>>> x2 = 1
>>> result = jnp.right_shift(x1, x2)
>>> result
Array([0, 1, 2, 4], dtype=int32)
>>> print_binary(result)
['0b0', '0b1', '0b10', '0b100']
>>> x1 = 16
>>> print_binary([x1])
['0b10000']
>>> x2 = jnp.array([1, 2, 3, 4])
>>> result = jnp.right_shift(x1, x2)
>>> result
Array([8, 4, 2, 1], dtype=int32)
>>> print_binary(result)
['0b1000', '0b100', '0b10', '0b1']
"""
x1, x2 = promote_args_numeric(np.right_shift.__name__, x1, x2)
lax_fn = lax.shift_right_logical if \
np.issubdtype(x1.dtype, np.unsignedinteger) else lax.shift_right_arithmetic
return lax_fn(x1, x2)
@partial(jit, inline=True)
def bitwise_right_shift(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.right_shift`."""
return right_shift(x1, x2)
@partial(jit, inline=True)
def absolute(x: ArrayLike, /) -> Array:
r"""Calculate the absolute value element-wise.
JAX implementation of :obj:`numpy.absolute`.
This is the same function as :func:`jax.numpy.abs`.
Args:
x: Input array
Returns:
An array-like object containing the absolute value of each element in ``x``,
with the same shape as ``x``. For complex valued input, :math:`a + ib`,
the absolute value is :math:`\sqrt{a^2+b^2}`.
Examples:
>>> x1 = jnp.array([5, -2, 0, 12])
>>> jnp.absolute(x1)
Array([ 5, 2, 0, 12], dtype=int32)
>>> x2 = jnp.array([[ 8, -3, 1],[ 0, 9, -6]])
>>> jnp.absolute(x2)
Array([[8, 3, 1],
[0, 9, 6]], dtype=int32)
>>> x3 = jnp.array([8 + 15j, 3 - 4j, -5 + 0j])
>>> jnp.absolute(x3)
Array([17., 5., 5.], dtype=float32)
"""
check_arraylike('absolute', x)
dt = dtypes.dtype(x)
return lax.asarray(x) if dt == np.bool_ or dtypes.issubdtype(dt, np.unsignedinteger) else lax.abs(x)
@partial(jit, inline=True)
def abs(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.absolute`."""
return absolute(x)
@jit
def rint(x: ArrayLike, /) -> Array:
"""Rounds the elements of x to the nearest integer
JAX implementation of :obj:`numpy.rint`.
Args:
x: Input array
Returns:
An array-like object containing the rounded elements of ``x``. Always promotes
to inexact.
Note:
If an element of x is exactly half way, e.g. ``0.5`` or ``1.5``, rint will round
to the nearest even integer.
Examples:
>>> x1 = jnp.array([5, 4, 7])
>>> jnp.rint(x1)
Array([5., 4., 7.], dtype=float32)
>>> x2 = jnp.array([-2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
>>> jnp.rint(x2)
Array([-2., -2., -0., 0., 2., 2., 4., 4.], dtype=float32)
>>> x3 = jnp.array([-2.5+3.5j, 4.5-0.5j])
>>> jnp.rint(x3)
Array([-2.+4.j, 4.-0.j], dtype=complex64)
"""
check_arraylike('rint', x)
dtype = dtypes.dtype(x)
if dtype == bool or dtypes.issubdtype(dtype, np.integer):
return lax.convert_element_type(x, dtypes.float_)
if dtypes.issubdtype(dtype, np.complexfloating):
return lax.complex(rint(lax.real(x)), rint(lax.imag(x)))
return lax.round(x, lax.RoundingMethod.TO_NEAREST_EVEN)
@jit
def copysign(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Copies the sign of each element in ``x2`` to the corresponding element in ``x1``.
JAX implementation of :obj:`numpy.copysign`.
Args:
x1: Input array
x2: The array whose elements will be used to determine the sign, must be
broadcast-compatible with ``x1``
Returns:
An array object containing the potentially changed elements of ``x1``, always promotes
to inexact dtype, and has a shape of ``jnp.broadcast_shapes(x1.shape, x2.shape)``
Examples:
>>> x1 = jnp.array([5, 2, 0])
>>> x2 = -1
>>> jnp.copysign(x1, x2)
Array([-5., -2., -0.], dtype=float32)
>>> x1 = jnp.array([6, 8, 0])
>>> x2 = 2
>>> jnp.copysign(x1, x2)
Array([6., 8., 0.], dtype=float32)
>>> x1 = jnp.array([2, -3])
>>> x2 = jnp.array([[1],[-4], [5]])
>>> jnp.copysign(x1, x2)
Array([[ 2., 3.],
[-2., -3.],
[ 2., 3.]], dtype=float32)
"""
x1, x2 = promote_args_inexact("copysign", x1, x2)
if dtypes.issubdtype(dtypes.dtype(x1), np.complexfloating):
raise TypeError("copysign does not support complex-valued inputs")
return _where(signbit(x2).astype(bool), -lax.abs(x1), lax.abs(x1))
@partial(jit, inline=True)
def true_divide(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Calculates the division of x1 by x2 element-wise
JAX implementation of :func:`numpy.true_divide`.
Args:
x1: Input array, the dividend
x2: Input array, the divisor
Returns:
An array containing the elementwise quotients, will always use
floating point division.
Examples:
>>> x1 = jnp.array([3, 4, 5])
>>> x2 = 2
>>> jnp.true_divide(x1, x2)
Array([1.5, 2. , 2.5], dtype=float32)
>>> x1 = 24
>>> x2 = jnp.array([3, 4, 6j])
>>> jnp.true_divide(x1, x2)
Array([8.+0.j, 6.+0.j, 0.-4.j], dtype=complex64)
>>> x1 = jnp.array([1j, 9+5j, -4+2j])
>>> x2 = 3j
>>> jnp.true_divide(x1, x2)
Array([0.33333334+0.j , 1.6666666 -3.j ,
0.6666667 +1.3333334j], dtype=complex64)
See Also:
:func:`jax.numpy.floor_divide` for integer division
"""
x1, x2 = promote_args_inexact("true_divide", x1, x2)
return lax.div(x1, x2)
def divide(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.true_divide`."""
return true_divide(x1, x2)
@jit
def floor_divide(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Calculates the floor division of x1 by x2 element-wise
JAX implementation of :obj:`numpy.floor_divide`.
Args:
x1: Input array, the dividend
x2: Input array, the divisor
Returns:
An array-like object containing each of the quotients rounded down
to the nearest integer towards negative infinity. This is equivalent
to ``x1 // x2`` in Python.
Note:
``x1 // x2`` is equivalent to ``jnp.floor_divide(x1, x2)`` for arrays ``x1``
and ``x2``
See Also:
:func:`jax.numpy.divide` and :func:`jax.numpy.true_divide` for floating point
division.
Examples:
>>> x1 = jnp.array([10, 20, 30])
>>> x2 = jnp.array([3, 4, 7])
>>> jnp.floor_divide(x1, x2)
Array([3, 5, 4], dtype=int32)
>>> x1 = jnp.array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
>>> x2 = 3
>>> jnp.floor_divide(x1, x2)
Array([-2, -2, -1, -1, -1, 0, 0, 0, 1, 1, 1], dtype=int32)
>>> x1 = jnp.array([6, 6, 6], dtype=jnp.int32)
>>> x2 = jnp.array([2.0, 2.5, 3.0], dtype=jnp.float32)
>>> jnp.floor_divide(x1, x2)
Array([3., 2., 2.], dtype=float32)
"""
x1, x2 = promote_args_numeric("floor_divide", x1, x2)
dtype = dtypes.dtype(x1)
if dtypes.issubdtype(dtype, np.unsignedinteger):
return lax.div(x1, x2)
elif dtypes.issubdtype(dtype, np.integer):
quotient = lax.div(x1, x2)
select = logical_and(lax.sign(x1) != lax.sign(x2), lax.rem(x1, x2) != 0)
# TODO(mattjj): investigate why subtracting a scalar was causing promotion
return _where(select, quotient - 1, quotient)
elif dtypes.issubdtype(dtype, np.complexfloating):
raise TypeError("floor_divide does not support complex-valued inputs")
else:
return _float_divmod(x1, x2)[0]
@jit
def divmod(x1: ArrayLike, x2: ArrayLike, /) -> tuple[Array, Array]:
"""Calculates the integer quotient and remainder of x1 by x2 element-wise
JAX implementation of :obj:`numpy.divmod`.
Args:
x1: Input array, the dividend
x2: Input array, the divisor
Returns:
A tuple of arrays ``(x1 // x2, x1 % x2)``.
See Also:
- :func:`jax.numpy.floor_divide`: floor division function
- :func:`jax.numpy.remainder`: remainder function
Examples:
>>> x1 = jnp.array([10, 20, 30])
>>> x2 = jnp.array([3, 4, 7])
>>> jnp.divmod(x1, x2)
(Array([3, 5, 4], dtype=int32), Array([1, 0, 2], dtype=int32))
>>> x1 = jnp.array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
>>> x2 = 3
>>> jnp.divmod(x1, x2)
(Array([-2, -2, -1, -1, -1, 0, 0, 0, 1, 1, 1], dtype=int32),
Array([1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2], dtype=int32))
>>> x1 = jnp.array([6, 6, 6], dtype=jnp.int32)
>>> x2 = jnp.array([1.9, 2.5, 3.1], dtype=jnp.float32)
>>> jnp.divmod(x1, x2)
(Array([3., 2., 1.], dtype=float32),
Array([0.30000007, 1. , 2.9 ], dtype=float32))
"""
x1, x2 = promote_args_numeric("divmod", x1, x2)
if dtypes.issubdtype(dtypes.dtype(x1), np.integer):
return floor_divide(x1, x2), remainder(x1, x2)
else:
return _float_divmod(x1, x2)
def _float_divmod(x1: ArrayLike, x2: ArrayLike) -> tuple[Array, Array]:
# see float_divmod in floatobject.c of CPython
mod = lax.rem(x1, x2)
div = lax.div(lax.sub(x1, mod), x2)
ind = lax.bitwise_and(mod != 0, lax.sign(x2) != lax.sign(mod))
mod = lax.select(ind, mod + x2, mod)
div = lax.select(ind, div - _constant_like(div, 1), div)
return lax.round(div), mod
def power(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Calculate element-wise base ``x1`` exponential of ``x2``.
JAX implementation of :obj:`numpy.power`.
Args:
x1: scalar or array. Specifies the bases.
x2: scalar or array. Specifies the exponent. ``x1`` and ``x2`` should either
have same shape or be broadcast compatible.
Returns:
An array containing the base ``x1`` exponentials of ``x2`` with same dtype
as input.
Note:
- When ``x2`` is a concrete integer scalar, ``jnp.power`` lowers to
:func:`jax.lax.integer_pow`.
- When ``x2`` is a traced scalar or an array, ``jnp.power`` lowers to
:func:`jax.lax.pow`.
- ``jnp.power`` raises a ``TypeError`` for integer type raised to negative
integer power.
- ``jnp.power`` returns ``nan`` for negative value raised to the power of
non-integer values.
See also:
- :func:`jax.lax.pow`: Computes element-wise power, :math:`x^y`.
- :func:`jax.lax.integer_pow`: Computes element-wise power :math:`x^y`, where
:math:`y` is a fixed integer.
- :func:`jax.numpy.float_power`: Computes the first array raised to the power
of second array, element-wise, by promoting to the inexact dtype.
- :func:`jax.numpy.pow`: Computes the first array raised to the power of second
array, element-wise.
Examples:
Inputs with scalar integers:
>>> jnp.power(4, 3)
Array(64, dtype=int32, weak_type=True)
Inputs with same shape:
>>> x1 = jnp.array([2, 4, 5])
>>> x2 = jnp.array([3, 0.5, 2])
>>> jnp.power(x1, x2)
Array([ 8., 2., 25.], dtype=float32)
Inputs with broadcast compatibility:
>>> x3 = jnp.array([-2, 3, 1])
>>> x4 = jnp.array([[4, 1, 6],
... [1.3, 3, 5]])
>>> jnp.power(x3, x4)
Array([[16., 3., 1.],
[nan, 27., 1.]], dtype=float32)
"""
check_arraylike("power", x1, x2)
check_no_float0s("power", x1, x2)
# We apply special cases, both for algorithmic and autodiff reasons:
# 1. for *concrete* integer scalar powers (and arbitrary bases), we use
# unrolled binary exponentiation specialized on the exponent, which is
# more precise for e.g. x ** 2 when x is a float (algorithmic reason!);
# 2. for integer bases and integer powers, use unrolled binary exponentiation
# where the number of steps is determined by a max bit width of 64
# (algorithmic reason!);
# 3. for integer powers and float/complex bases, we apply the lax primitive
# without any promotion of input types because in this case we want the
# function to be differentiable wrt its first argument at 0;
# 3. for other cases, perform jnp dtype promotion on the arguments then apply
# lax.pow.
# Case 1: concrete integer scalar powers:
if isinstance(core.get_aval(x2), core.ConcreteArray):
try:
x2 = operator.index(x2) # type: ignore[arg-type]
except TypeError:
pass
else:
x1, = promote_dtypes_numeric(x1)
return lax.integer_pow(x1, x2)
# Handle cases #2 and #3 under a jit:
return _power(x1, x2)
def pow(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.power`"""
return power(x1, x2)
@partial(jit, inline=True)
def _power(x1: ArrayLike, x2: ArrayLike) -> Array:
x1, x2 = promote_shapes("power", x1, x2) # not dtypes
# Case 2: bool/integer result
x1_, x2_ = promote_args_numeric("power", x1, x2)
if (dtypes.issubdtype(dtypes.dtype(x1_), np.integer) or
dtypes.issubdtype(dtypes.dtype(x1_), np.bool_)):
assert np.iinfo(dtypes.dtype(x1_)).bits <= 64 # _pow_int_int assumes <=64bit
return _pow_int_int(x1_, x2_)
# Case 3: float/complex base with integer power (special autodiff behavior)
d1, d2 = dtypes.dtype(x1), dtypes.dtype(x2)
if dtypes.issubdtype(d1, np.inexact) and dtypes.issubdtype(d2, np.integer):
return lax.pow(x1, x2)
# Case 4: do promotion first
return lax.pow(x1_, x2_)
# TODO(phawkins): add integer pow support to XLA.
def _pow_int_int(x1, x2):
# Integer power => use binary exponentiation.
bits = 6 # Anything more would overflow for any x1 > 1
zero = _constant_like(x2, 0)
one = _constant_like(x2, 1)
# Initialize acc carefully such that pow(0, x2) is zero for x2 != 0
acc = _where(lax.bitwise_and(lax.eq(x1, zero), lax.ne(x2, zero)), zero, one)
for _ in range(bits):
acc = _where(lax.bitwise_and(x2, one), lax.mul(acc, x1), acc)
x1 = lax.mul(x1, x1)
x2 = lax.shift_right_logical(x2, one)
return acc
@jit
def logaddexp(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Compute ``log(exp(x1) + exp(x2))`` avoiding overflow.
JAX implementation of :obj:`numpy.logaddexp`
Args:
x1: input array
x2: input array
Returns:
array containing the result.
Examples:
>>> x1 = jnp.array([1, 2, 3])
>>> x2 = jnp.array([4, 5, 6])
>>> result1 = jnp.logaddexp(x1, x2)
>>> result2 = jnp.log(jnp.exp(x1) + jnp.exp(x2))
>>> print(jnp.allclose(result1, result2))
True
"""
x1, x2 = promote_args_inexact("logaddexp", x1, x2)
return lax_other.logaddexp(x1, x2)
def _wrap_between(x, _a):
"""Wraps `x` between `[-a, a]`."""
a = _constant_like(x, _a)
two_a = _constant_like(x, 2 * _a)
zero = _constant_like(x, 0)
rem = lax.rem(lax.add(x, a), two_a)
rem = lax.select(lax.lt(rem, zero), lax.add(rem, two_a), rem)
return lax.sub(rem, a)
@jit
def logaddexp2(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Logarithm of the sum of exponentials of inputs in base-2 avoiding overflow.
JAX implementation of :obj:`numpy.logaddexp2`.
Args:
x1: input array or scalar.
x2: input array or scalar. ``x1`` and ``x2`` should either have same shape or
be broadcast compatible.
Returns:
An array containing the result, :math:`log_2(2^{x1}+2^{x2})`, element-wise.
See also:
- :func:`jax.numpy.logaddexp`: Computes ``log(exp(x1) + exp(x2))``, element-wise.
- :func:`jax.numpy.log2`: Calculates the base-2 logarithm of ``x`` element-wise.
Examples:
>>> x1 = jnp.array([[3, -1, 4],
... [8, 5, -2]])
>>> x2 = jnp.array([2, 3, -5])
>>> result1 = jnp.logaddexp2(x1, x2)
>>> result2 = jnp.log2(jnp.exp2(x1) + jnp.exp2(x2))
>>> jnp.allclose(result1, result2)
Array(True, dtype=bool)
"""
x1, x2 = promote_args_inexact("logaddexp2", x1, x2)
return _logaddexp2(x1, x2)
@custom_jvp
def _logaddexp2(x1, x2):
amax = lax.max(x1, x2)
if dtypes.issubdtype(x1.dtype, np.floating):
delta = lax.sub(x1, x2)
return lax.select(lax._isnan(delta),
lax.add(x1, x2), # NaNs or infinities of the same sign.
lax.add(amax, lax.div(lax.log1p(exp2(lax.neg(lax.abs(delta)))),
_constant_like(x1, np.log(2)))))
else:
delta = lax.sub(lax.add(x1, x2), lax.mul(amax, _constant_like(amax, 2)))
out = lax.add(amax, lax.div(lax.log1p(exp2(delta)), _constant_like(x1, np.log(2))))
return lax.complex(lax.real(out), _wrap_between(lax.imag(out), np.pi / np.log(2)))
@_logaddexp2.defjvp
def _logaddexp2_jvp(primals, tangents):
x1, x2 = primals
t1, t2 = tangents
x1, x2, t1, t2 = promote_args_inexact("logaddexp2_jvp", x1, x2, t1, t2)
primal_out = logaddexp2(x1, x2)
tangent_out = lax.add(lax.mul(t1, exp2(lax.sub(_replace_inf(x1), _replace_inf(primal_out)))),
lax.mul(t2, exp2(lax.sub(_replace_inf(x2), _replace_inf(primal_out)))))
return primal_out, tangent_out
@partial(jit, inline=True)
def log2(x: ArrayLike, /) -> Array:
"""Calculates the base-2 logarithm of ``x`` element-wise.
JAX implementation of :obj:`numpy.log2`.
Args:
x: Input array
Returns:
An array containing the base-2 logarithm of each element in ``x``, promotes
to inexact dtype.
Examples:
>>> x1 = jnp.array([0.25, 0.5, 1, 2, 4, 8])
>>> jnp.log2(x1)
Array([-2., -1., 0., 1., 2., 3.], dtype=float32)
"""
x, = promote_args_inexact("log2", x)
return lax.div(lax.log(x), lax.log(_constant_like(x, 2)))
@partial(jit, inline=True)
def log10(x: ArrayLike, /) -> Array:
"""Calculates the base-10 logarithm of x element-wise
JAX implementation of :obj:`numpy.log10`.
Args:
x: Input array
Returns:
An array containing the base-10 logarithm of each element in ``x``, promotes
to inexact dtype.
Examples:
>>> x1 = jnp.array([0.01, 0.1, 1, 10, 100, 1000])
>>> with jnp.printoptions(precision=2, suppress=True):
... print(jnp.log10(x1))
[-2. -1. 0. 1. 2. 3.]
"""
x, = promote_args_inexact("log10", x)
return lax.div(lax.log(x), lax.log(_constant_like(x, 10)))
@partial(jit, inline=True)
def exp2(x: ArrayLike, /) -> Array:
"""Calculate element-wise base-2 exponential of input.
JAX implementation of :obj:`numpy.exp2`.
Args:
x: input array or scalar
Returns:
An array containing the base-2 exponential of each element in ``x``, promotes
to inexact dtype.
See also:
- :func:`jax.numpy.log2`: Calculates base-2 logarithm of each element of input.
- :func:`jax.numpy.exp`: Calculates exponential of each element of the input.
- :func:`jax.numpy.expm1`: Calculates :math:`e^x-1` of each element of the
input.
Examples:
``jnp.exp2`` follows the properties of the exponential such as :math:`2^{a+b}
= 2^a * 2^b`.
>>> x1 = jnp.array([2, -4, 3, -1])
>>> x2 = jnp.array([-1, 3, -2, 3])
>>> jnp.exp2(x1+x2)
Array([2. , 0.5, 2. , 4. ], dtype=float32)
>>> jnp.exp2(x1)*jnp.exp2(x2)
Array([2. , 0.5, 2. , 4. ], dtype=float32)
"""
x, = promote_args_inexact("exp2", x)
return lax.exp2(x)
@jit
def signbit(x: ArrayLike, /) -> Array:
"""Return the sign bit of array elements.
JAX implementation of :obj:`numpy.signbit`.
Args:
x: input array. Complex values are not supported.
Returns:
A boolean array of the same shape as ``x``, containing ``True``
where the sign of ``x`` is negative, and ``False`` otherwise.
See also:
- :func:`jax.numpy.sign`: return the mathematical sign of array elements,
i.e. ``-1``, ``0``, or ``+1``.
Examples:
:func:`signbit` on boolean values is always ``False``:
>>> x = jnp.array([True, False])
>>> jnp.signbit(x)
Array([False, False], dtype=bool)
:func:`signbit` on integer values is equivalent to ``x < 0``:
>>> x = jnp.array([-2, -1, 0, 1, 2])
>>> jnp.signbit(x)
Array([ True, True, False, False, False], dtype=bool)
:func:`signbit` on floating point values returns the value of the actual
sign bit from the float representation, including signed zero:
>>> x = jnp.array([-1.5, -0.0, 0.0, 1.5])
>>> jnp.signbit(x)
Array([ True, True, False, False], dtype=bool)
This also returns the sign bit for special values such as signed NaN
and signed infinity:
>>> x = jnp.array([jnp.nan, -jnp.nan, jnp.inf, -jnp.inf])
>>> jnp.signbit(x)
Array([False, True, False, True], dtype=bool)
"""
x, = promote_args("signbit", x)
dtype = dtypes.dtype(x)
if dtypes.issubdtype(dtype, np.integer):
return lax.lt(x, _constant_like(x, 0))
elif dtypes.issubdtype(dtype, np.bool_):
return lax.full_like(x, False, dtype=np.bool_)
elif not dtypes.issubdtype(dtype, np.floating):
raise ValueError(
"jax.numpy.signbit is not well defined for %s" % dtype)
info = dtypes.finfo(dtype)
if info.bits not in _INT_DTYPES:
raise NotImplementedError(
"jax.numpy.signbit only supports 16, 32, and 64-bit types.")
int_type = _INT_DTYPES[info.bits]
x = lax.bitcast_convert_type(x, int_type)
return lax.convert_element_type(x >> (info.nexp + info.nmant), np.bool_)
def _normalize_float(x):
info = dtypes.finfo(dtypes.dtype(x))
int_type = _INT_DTYPES[info.bits]
cond = lax.abs(x) < info.tiny
x1 = _where(cond, x * _lax_const(x, 1 << info.nmant), x)
x2 = _where(cond, int_type(-info.nmant), int_type(0))
return lax.bitcast_convert_type(x1, int_type), x2
@jit
def ldexp(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Compute x1 * 2 ** x2
JAX implementation of :func:`numpy.ldexp`.
Note that XLA does not provide an ``ldexp`` operation, so this
is implemneted in JAX via a standard multiplication and
exponentiation.
Args:
x1: real-valued input array.
x2: integer input array. Must be broadcast-compatible with ``x1``.
Returns:
``x1 * 2 ** x2`` computed element-wise.
See also:
- :func:`jax.numpy.frexp`: decompose values into mantissa and exponent.
Examples:
>>> x1 = jnp.arange(5.0)
>>> x2 = 10
>>> jnp.ldexp(x1, x2)
Array([ 0., 1024., 2048., 3072., 4096.], dtype=float32)
``ldexp`` can be used to reconstruct the input to ``frexp``:
>>> x = jnp.array([2., 3., 5., 11.])
>>> m, e = jnp.frexp(x)
>>> m
Array([0.5 , 0.75 , 0.625 , 0.6875], dtype=float32)
>>> e
Array([2, 2, 3, 4], dtype=int32)
>>> jnp.ldexp(m, e)
Array([ 2., 3., 5., 11.], dtype=float32)
"""
check_arraylike("ldexp", x1, x2)
x1_dtype = dtypes.dtype(x1)
x2_dtype = dtypes.dtype(x2)
if (dtypes.issubdtype(x1_dtype, np.complexfloating)
or dtypes.issubdtype(x2_dtype, np.inexact)):
raise ValueError(f"ldexp not supported for input types {(x1_dtype, x2_dtype)}")
x1, = promote_args_inexact("ldexp", x1)
x2 = lax.convert_element_type(x2, dtypes.dtype(x1))
x = x1 * (2 ** x2)
return _where(isinf(x1) | (x1 == 0), x1, x)
@jit
def frexp(x: ArrayLike, /) -> tuple[Array, Array]:
"""Split floating point values into mantissa and twos exponent.
JAX implementation of :func:`numpy.frexp`.
Args:
x: real-valued array
Returns:
A tuple ``(mantissa, exponent)`` where ``mantissa`` is a floating point
value between -1 and 1, and ``exponent`` is an integer such that
``x == mantissa * 2 ** exponent``.
See also:
- :func:`jax.numpy.ldexp`: compute the inverse of ``frexp``.
Examples:
Split values into mantissa and exponent:
>>> x = jnp.array([1., 2., 3., 4., 5.])
>>> m, e = jnp.frexp(x)
>>> m
Array([0.5 , 0.5 , 0.75 , 0.5 , 0.625], dtype=float32)
>>> e
Array([1, 2, 2, 3, 3], dtype=int32)
Reconstruct the original array:
>>> m * 2 ** e
Array([1., 2., 3., 4., 5.], dtype=float32)
"""
check_arraylike("frexp", x)
x, = promote_dtypes_inexact(x)
if dtypes.issubdtype(x.dtype, np.complexfloating):
raise TypeError("frexp does not support complex-valued inputs")
dtype = dtypes.dtype(x)
info = dtypes.finfo(dtype)
mask = (1 << info.nexp) - 1
bias = 1 - info.minexp
x1, x2 = _normalize_float(x)
x2 += ((x1 >> info.nmant) & mask) - bias + 1
x1 &= ~(mask << info.nmant)
x1 |= (bias - 1) << info.nmant
x1 = lax.bitcast_convert_type(x1, dtype)
cond = isinf(x) | isnan(x) | (x == 0)
x2 = _where(cond, lax._zeros(x2), x2)
return _where(cond, x, x1), lax.convert_element_type(x2, np.int32)
@jit
def remainder(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Returns element-wise remainder of the division.
JAX implementation of :obj:`numpy.remainder`.
Args:
x1: scalar or array. Specifies the dividend.
x2: scalar or array. Specifies the divisor. ``x1`` and ``x2`` should either
have same shape or be broadcast compatible.
Returns:
An array containing the remainder of element-wise division of ``x1`` by
``x2`` with same sign as the elements of ``x2``.
Note:
The result of ``jnp.remainder`` is equivalent to ``x1 - x2 * jnp.floor(x1 / x2)``.
See also:
- :func:`jax.numpy.mod`: Returns the element-wise remainder of the division.
- :func:`jax.numpy.fmod`: Calculates the element-wise floating-point modulo
operation.
- :func:`jax.numpy.divmod`: Calculates the integer quotient and remainder of
``x1`` by ``x2``, element-wise.
Examples:
>>> x1 = jnp.array([[3, -1, 4],
... [8, 5, -2]])
>>> x2 = jnp.array([2, 3, -5])
>>> jnp.remainder(x1, x2)
Array([[ 1, 2, -1],
[ 0, 2, -2]], dtype=int32)
>>> x1 - x2 * jnp.floor(x1 / x2)
Array([[ 1., 2., -1.],
[ 0., 2., -2.]], dtype=float32)
"""
x1, x2 = promote_args_numeric("remainder", x1, x2)
zero = _constant_like(x1, 0)
if dtypes.issubdtype(x2.dtype, np.integer):
x2 = _where(x2 == 0, lax._ones(x2), x2)
trunc_mod = lax.rem(x1, x2)
trunc_mod_not_zero = lax.ne(trunc_mod, zero)
do_plus = lax.bitwise_and(
lax.ne(lax.lt(trunc_mod, zero), lax.lt(x2, zero)), trunc_mod_not_zero)
return lax.select(do_plus, lax.add(trunc_mod, x2), trunc_mod)
def mod(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.remainder`"""
return remainder(x1, x2)
@jit
def fmod(x1: ArrayLike, x2: ArrayLike, /) -> Array:
"""Calculate element-wise floating-point modulo operation.
JAX implementation of :obj:`numpy.fmod`.
Args:
x1: scalar or array. Specifies the dividend.
x2: scalar or array. Specifies the divisor. ``x1`` and ``x2`` should either
have same shape or be broadcast compatible.
Returns:
An array containing the result of the element-wise floating-point modulo
operation of ``x1`` and ``x2`` with same sign as the elements of ``x1``.
Note:
The result of ``jnp.fmod`` is equivalent to ``x1 - x2 * jnp.fix(x1 / x2)``.
See also:
- :func:`jax.numpy.mod` and :func:`jax.numpy.remainder`: Returns the element-wise
remainder of the division.
- :func:`jax.numpy.divmod`: Calculates the integer quotient and remainder of
``x1`` by ``x2``, element-wise.
Examples:
>>> x1 = jnp.array([[3, -1, 4],
... [8, 5, -2]])
>>> x2 = jnp.array([2, 3, -5])
>>> jnp.fmod(x1, x2)
Array([[ 1, -1, 4],
[ 0, 2, -2]], dtype=int32)
>>> x1 - x2 * jnp.fix(x1 / x2)
Array([[ 1., -1., 4.],
[ 0., 2., -2.]], dtype=float32)
"""
check_arraylike("fmod", x1, x2)
if dtypes.issubdtype(dtypes.result_type(x1, x2), np.integer):
x2 = _where(x2 == 0, lax._ones(x2), x2)
return lax.rem(*promote_args_numeric("fmod", x1, x2))
@partial(jit, inline=True)
def square(x: ArrayLike, /) -> Array:
"""Calculate element-wise square of the input array.
JAX implementation of :obj:`numpy.square`.
Args:
x: input array or scalar.
Returns:
An array containing the square of the elements of ``x``.
Note:
``jnp.square`` is equivalent to computing ``jnp.power(x, 2)``.
See also:
- :func:`jax.numpy.sqrt`: Calculates the element-wise non-negative square root
of the input array.
- :func:`jax.numpy.power`: Calculates the element-wise base ``x1`` exponential
of ``x2``.
- :func:`jax.lax.integer_pow`: Computes element-wise power :math:`x^y`, where
:math:`y` is a fixed integer.
- :func:`jax.numpy.float_power`: Computes the first array raised to the power
of second array, element-wise, by promoting to the inexact dtype.
Examples:
>>> x = jnp.array([3, -2, 5.3, 1])
>>> jnp.square(x)
Array([ 9. , 4. , 28.090002, 1. ], dtype=float32)
>>> jnp.power(x, 2)
Array([ 9. , 4. , 28.090002, 1. ], dtype=float32)
For integer inputs:
>>> x1 = jnp.array([2, 4, 5, 6])
>>> jnp.square(x1)
Array([ 4, 16, 25, 36], dtype=int32)
For complex-valued inputs:
>>> x2 = jnp.array([1-3j, -1j, 2])
>>> jnp.square(x2)
Array([-8.-6.j, -1.+0.j, 4.+0.j], dtype=complex64)
"""
check_arraylike("square", x)
x, = promote_dtypes_numeric(x)
return lax.integer_pow(x, 2)
@partial(jit, inline=True)
def deg2rad(x: ArrayLike, /) -> Array:
r"""Convert angles from degrees to radians.
JAX implementation of :obj:`numpy.deg2rad`.
The angle in degrees is converted to radians by:
.. math::
deg2rad(x) = x * \frac{pi}{180}
Args:
x: scalar or array. Specifies the angle in degrees.
Returns:
An array containing the angles in radians.
See also:
- :func:`jax.numpy.rad2deg` and :func:`jax.numpy.degrees`: Converts the angles
from radians to degrees.
- :func:`jax.numpy.radians`: Alias of ``deg2rad``.
Examples:
>>> x = jnp.array([60, 90, 120, 180])
>>> jnp.deg2rad(x)
Array([1.0471976, 1.5707964, 2.0943952, 3.1415927], dtype=float32)
>>> x * jnp.pi / 180
Array([1.0471976, 1.5707964, 2.0943952, 3.1415927], dtype=float32, weak_type=True)
"""
x, = promote_args_inexact("deg2rad", x)
return lax.mul(x, _lax_const(x, np.pi / 180))
@partial(jit, inline=True)
def rad2deg(x: ArrayLike, /) -> Array:
r"""Convert angles from radians to degrees.
JAX implementation of :obj:`numpy.rad2deg`.
The angle in radians is converted to degrees by:
.. math::
rad2deg(x) = x * \frac{180}{pi}
Args:
x: scalar or array. Specifies the angle in radians.
Returns:
An array containing the angles in degrees.
See also:
- :func:`jax.numpy.deg2rad` and :func:`jax.numpy.radians`: Converts the angles
from degrees to radians.
- :func:`jax.numpy.degrees`: Alias of ``rad2deg``.
Examples:
>>> pi = jnp.pi
>>> x = jnp.array([pi/4, pi/2, 2*pi/3])
>>> jnp.rad2deg(x)
Array([ 45. , 90. , 120.00001], dtype=float32)
>>> x * 180 / pi
Array([ 45., 90., 120.], dtype=float32)
"""
x, = promote_args_inexact("rad2deg", x)
return lax.mul(x, _lax_const(x, 180 / np.pi))
def degrees(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.rad2deg`"""
return rad2deg(x)
def radians(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.deg2rad`"""
return deg2rad(x)
@partial(jit, inline=True)
def conjugate(x: ArrayLike, /) -> Array:
"""Return element-wise complex-conjugate of the input.
JAX implementation of :obj:`numpy.conjugate`.
Args:
x: inpuat array or scalar.
Returns:
An array containing the complex-conjugate of ``x``.
See also:
- :func:`jax.numpy.real`: Returns the element-wise real part of the complex
argument.
- :func:`jax.numpy.imag`: Returns the element-wise imaginary part of the
complex argument.
Examples:
>>> jnp.conjugate(3)
Array(3, dtype=int32, weak_type=True)
>>> x = jnp.array([2-1j, 3+5j, 7])
>>> jnp.conjugate(x)
Array([2.+1.j, 3.-5.j, 7.-0.j], dtype=complex64)
"""
check_arraylike("conjugate", x)
return lax.conj(x) if np.iscomplexobj(x) else lax.asarray(x)
def conj(x: ArrayLike, /) -> Array:
"""Alias of :func:`jax.numpy.conjugate`"""
return conjugate(x)
@partial(jit, inline=True)
def imag(val: ArrayLike, /) -> Array:
"""Return element-wise imaginary of part of the complex argument.
JAX implementation of :obj:`numpy.imag`.
Args:
val: input array or scalar.
Returns:
An array containing the imaginary part of the elements of ``val``.
See also:
- :func:`jax.numpy.conjugate` and :func:`jax.numpy.conj`: Returns the element-wise
complex-conjugate of the input.
- :func:`jax.numpy.real`: Returns the element-wise real part of the complex
argument.
Examples:
>>> jnp.imag(4)
Array(0, dtype=int32, weak_type=True)
>>> jnp.imag(5j)
Array(5., dtype=float32, weak_type=True)
>>> x = jnp.array([2+3j, 5-1j, -3])
>>> jnp.imag(x)
Array([ 3., -1., 0.], dtype=float32)
"""
check_arraylike("imag", val)
return lax.imag(val) if np.iscomplexobj(val) else lax.full_like(val, 0)
@partial(jit, inline=True)
def real(val: ArrayLike, /) -> Array:
"""Return element-wise real part of the complex argument.
JAX implementation of :obj:`numpy.real`.
Args:
val: input array or scalar.
Returns:
An array containing the real part of the elements of ``val``.
See also:
- :func:`jax.numpy.conjugate` and :func:`jax.numpy.conj`: Returns the element-wise
complex-conjugate of the input.
- :func:`jax.numpy.imag`: Returns the element-wise imaginary part of the
complex argument.
Examples:
>>> jnp.real(5)
Array(5, dtype=int32, weak_type=True)
>>> jnp.real(2j)
Array(0., dtype=float32, weak_type=True)
>>> x = jnp.array([3-2j, 4+7j, -2j])
>>> jnp.real(x)
Array([ 3., 4., -0.], dtype=float32)
"""
check_arraylike("real", val)
return lax.real(val) if np.iscomplexobj(val) else lax.asarray(val)
@jit
def modf(x: ArrayLike, /, out=None) -> tuple[Array, Array]:
"""Return element-wise fractional and integral parts of the input array.
JAX implementation of :obj:`numpy.modf`.
Args:
x: input array or scalar.
out: Not used by JAX.
Returns:
An array containing the fractional and integral parts of the elements of ``x``,
promoting dtypes inexact.
See also:
- :func:`jax.numpy.divmod`: Calculates the integer quotient and remainder of
``x1`` by ``x2`` element-wise.
Examples:
>>> jnp.modf(4.8)
(Array(0.8000002, dtype=float32, weak_type=True), Array(4., dtype=float32, weak_type=True))
>>> x = jnp.array([-3.4, -5.7, 0.6, 1.5, 2.3])
>>> jnp.modf(x)
(Array([-0.4000001 , -0.6999998 , 0.6 , 0.5 , 0.29999995], dtype=float32), Array([-3., -5., 0., 1., 2.], dtype=float32))
"""
check_arraylike("modf", x)
x, = promote_dtypes_inexact(x)
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.modf is not supported.")
whole = _where(lax.ge(x, lax._zero(x)), floor(x), ceil(x))
return x - whole, whole
@partial(jit, inline=True)
def isfinite(x: ArrayLike, /) -> Array:
"""Return a boolean array indicating whether each element of input is finite.
JAX implementation of :obj:`numpy.isfinite`.
Args:
x: input array or scalar.
Returns:
A boolean array of same shape as ``x`` containing ``True`` where ``x`` is
not ``inf``, ``-inf``, or ``NaN``, and ``False`` otherwise.
See also:
- :func:`jax.numpy.isinf`: Returns a boolean array indicating whether each
element of input is either positive or negative infinity.
- :func:`jax.numpy.isposinf`: Returns a boolean array indicating whether each
element of input is positive infinity.
- :func:`jax.numpy.isneginf`: Returns a boolean array indicating whether each
element of input is negative infinity.
- :func:`jax.numpy.isnan`: Returns a boolean array indicating whether each
element of input is not a number (``NaN``).
Examples:
>>> x = jnp.array([-1, 3, jnp.inf, jnp.nan])
>>> jnp.isfinite(x)
Array([ True, True, False, False], dtype=bool)
>>> jnp.isfinite(3-4j)
Array(True, dtype=bool, weak_type=True)
"""
check_arraylike("isfinite", x)
dtype = dtypes.dtype(x)
if dtypes.issubdtype(dtype, np.floating):
return lax.is_finite(x)
elif dtypes.issubdtype(dtype, np.complexfloating):
return lax.bitwise_and(lax.is_finite(real(x)), lax.is_finite(imag(x)))
else:
return lax.full_like(x, True, dtype=np.bool_)
@jit
def isinf(x: ArrayLike, /) -> Array:
"""Return a boolean array indicating whether each element of input is infinite.
JAX implementation of :obj:`numpy.isinf`.
Args:
x: input array or scalar.
Returns:
A boolean array of same shape as ``x`` containing ``True`` where ``x`` is
``inf`` or ``-inf``, and ``False`` otherwise.
See also:
- :func:`jax.numpy.isposinf`: Returns a boolean array indicating whether each
element of input is positive infinity.
- :func:`jax.numpy.isneginf`: Returns a boolean array indicating whether each
element of input is negative infinity.
- :func:`jax.numpy.isfinite`: Returns a boolean array indicating whether each
element of input is finite.
- :func:`jax.numpy.isnan`: Returns a boolean array indicating whether each
element of input is not a number (``NaN``).
Examples:
>>> jnp.isinf(jnp.inf)
Array(True, dtype=bool)
>>> x = jnp.array([2+3j, -jnp.inf, 6, jnp.inf, jnp.nan])
>>> jnp.isinf(x)
Array([False, True, False, True, False], dtype=bool)
"""
check_arraylike("isinf", x)
dtype = dtypes.dtype(x)
if dtypes.issubdtype(dtype, np.floating):
return lax.eq(lax.abs(x), _constant_like(x, np.inf))
elif dtypes.issubdtype(dtype, np.complexfloating):
re = lax.real(x)
im = lax.imag(x)
return lax.bitwise_or(lax.eq(lax.abs(re), _constant_like(re, np.inf)),
lax.eq(lax.abs(im), _constant_like(im, np.inf)))
else:
return lax.full_like(x, False, dtype=np.bool_)
def _isposneginf(infinity: float, x: ArrayLike, out) -> Array:
if out is not None:
raise NotImplementedError("The 'out' argument to isneginf/isposinf is not supported.")
dtype = dtypes.dtype(x)
if dtypes.issubdtype(dtype, np.floating):
return lax.eq(x, _constant_like(x, infinity))
elif dtypes.issubdtype(dtype, np.complexfloating):
raise ValueError("isposinf/isneginf are not well defined for complex types")
else:
return lax.full_like(x, False, dtype=np.bool_)
def isposinf(x, /, out=None):
"""
Return boolean array indicating whether each element of input is positive infinite.
JAX implementation of :obj:`numpy.isposinf`.
Args:
x: input array or scalar. ``complex`` dtype are not supported.
Returns:
A boolean array of same shape as ``x`` containing ``True`` where ``x`` is
``inf``, and ``False`` otherwise.
See also:
- :func:`jax.numpy.isinf`: Returns a boolean array indicating whether each
element of input is either positive or negative infinity.
- :func:`jax.numpy.isneginf`: Returns a boolean array indicating whether each
element of input is negative infinity.
- :func:`jax.numpy.isfinite`: Returns a boolean array indicating whether each
element of input is finite.
- :func:`jax.numpy.isnan`: Returns a boolean array indicating whether each
element of input is not a number (``NaN``).
Examples:
>>> jnp.isposinf(5)
Array(False, dtype=bool)
>>> x = jnp.array([-jnp.inf, 5, jnp.inf, jnp.nan, 1])
>>> jnp.isposinf(x)
Array([False, False, True, False, False], dtype=bool)
"""
return _isposneginf(np.inf, x, out)
def isneginf(x, /, out=None):
"""
Return boolean array indicating whether each element of input is negative infinite.
JAX implementation of :obj:`numpy.isneginf`.
Args:
x: input array or scalar. ``complex`` dtype are not supported.
Returns:
A boolean array of same shape as ``x`` containing ``True`` where ``x`` is
``-inf``, and ``False`` otherwise.
See also:
- :func:`jax.numpy.isinf`: Returns a boolean array indicating whether each
element of input is either positive or negative infinity.
- :func:`jax.numpy.isposinf`: Returns a boolean array indicating whether each
element of input is positive infinity.
- :func:`jax.numpy.isfinite`: Returns a boolean array indicating whether each
element of input is finite.
- :func:`jax.numpy.isnan`: Returns a boolean array indicating whether each
element of input is not a number (``NaN``).
Examples:
>>> jnp.isneginf(jnp.inf)
Array(False, dtype=bool)
>>> x = jnp.array([-jnp.inf, 5, jnp.inf, jnp.nan, 1])
>>> jnp.isneginf(x)
Array([ True, False, False, False, False], dtype=bool)
"""
return _isposneginf(-np.inf, x, out)
@partial(jit, inline=True)
def isnan(x: ArrayLike, /) -> Array:
"""Returns a boolean array indicating whether each element of input is ``NaN``.
JAX implementation of :obj:`numpy.isnan`.
Args:
x: input array or scalar.
Returns:
A boolean array of same shape as ``x`` containing ``True`` where ``x`` is
not a number (i.e. ``NaN``) and ``False`` otherwise.
See also:
- :func:`jax.numpy.isfinite`: Returns a boolean array indicating whether each
element of input is finite.
- :func:`jax.numpy.isinf`: Returns a boolean array indicating whether each
element of input is either positive or negative infinity.
- :func:`jax.numpy.isposinf`: Returns a boolean array indicating whether each
element of input is positive infinity.
- :func:`jax.numpy.isneginf`: Returns a boolean array indicating whether each
element of input is negative infinity.
Examples:
>>> jnp.isnan(6)
Array(False, dtype=bool, weak_type=True)
>>> x = jnp.array([2, 1+4j, jnp.inf, jnp.nan])
>>> jnp.isnan(x)
Array([False, False, False, True], dtype=bool)
"""
check_arraylike("isnan", x)
return lax.ne(x, x)
@jit
def heaviside(x1: ArrayLike, x2: ArrayLike, /) -> Array:
r"""Compute the heaviside step function.
JAX implementation of :obj:`numpy.heaviside`.
The heaviside step function is defined by:
.. math::
\mathrm{heaviside}(x1, x2) = \begin{cases}
0., & x < 0\\
x2, & x = 0\\
1., & x > 0.
\end{cases}
Args:
x1: input array or scalar. ``complex`` dtype are not supported.
x2: scalar or array. Specifies the return values when ``x1`` is ``0``. ``complex``
dtype are not supported. ``x1`` and ``x2`` must either have same shape or
broadcast compatible.
Returns:
An array containing the heaviside step function of ``x1``, promoting to
inexact dtype.
Examples:
>>> x1 = jnp.array([[-2, 0, 3],
... [5, -1, 0],
... [0, 7, -3]])
>>> x2 = jnp.array([2, 0.5, 1])
>>> jnp.heaviside(x1, x2)
Array([[0. , 0.5, 1. ],
[1. , 0. , 1. ],
[2. , 1. , 0. ]], dtype=float32)
>>> jnp.heaviside(x1, 0.5)
Array([[0. , 0.5, 1. ],
[1. , 0. , 0.5],
[0.5, 1. , 0. ]], dtype=float32)
>>> jnp.heaviside(-3, x2)
Array([0., 0., 0.], dtype=float32)
"""
check_arraylike("heaviside", x1, x2)
x1, x2 = promote_dtypes_inexact(x1, x2)
zero = _lax_const(x1, 0)
return _where(lax.lt(x1, zero), zero,
_where(lax.gt(x1, zero), _lax_const(x1, 1), x2))
@jit
def hypot(x1: ArrayLike, x2: ArrayLike, /) -> Array:
r"""
Return element-wise hypotenuse for the given legs of a right angle triangle.
JAX implementation of :obj:`numpy.hypot`.
Args:
x1: scalar or array. Specifies one of the legs of right angle triangle.
``complex`` dtype are not supported.
x2: scalar or array. Specifies the other leg of right angle triangle.
``complex`` dtype are not supported. ``x1`` and ``x2`` must either have
same shape or be broadcast compatible.
Returns:
An array containing the hypotenuse for the given given legs ``x1`` and ``x2``
of a right angle triangle, promoting to inexact dtype.
Note:
``jnp.hypot`` is a more numerically stable way of computing
``jnp.sqrt(x1 ** 2 + x2 **2)``.
Examples:
>>> jnp.hypot(3, 4)
Array(5., dtype=float32, weak_type=True)
>>> x1 = jnp.array([[3, -2, 5],
... [9, 1, -4]])
>>> x2 = jnp.array([-5, 6, 8])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.hypot(x1, x2)
Array([[ 5.831, 6.325, 9.434],
[10.296, 6.083, 8.944]], dtype=float32)
"""
x1, x2 = promote_args_inexact("hypot", x1, x2)
# TODO(micky774): Promote to ValueError when deprecation is complete
# (began 2024-4-14).
if dtypes.issubdtype(x1.dtype, np.complexfloating):
raise ValueError(
"jnp.hypot is not well defined for complex-valued inputs. "
"Please convert to real values first, such as by using abs(x)")
x1, x2 = lax.abs(x1), lax.abs(x2)
idx_inf = lax.bitwise_or(isposinf(x1), isposinf(x2))
x1, x2 = maximum(x1, x2), minimum(x1, x2)
x = _where(x1 == 0, x1, x1 * lax.sqrt(1 + lax.square(lax.div(x2, _where(x1 == 0, lax._ones(x1), x1)))))
return _where(idx_inf, _lax_const(x, np.inf), x)
@partial(jit, inline=True)
def reciprocal(x: ArrayLike, /) -> Array:
"""Calculate element-wise reciprocal of the input.
JAX implementation of :obj:`numpy.reciprocal`.
The reciprocal is calculated by ``1/x``.
Args:
x: input array or scalar.
Returns:
An array of same shape as ``x`` containing the reciprocal of each element of
``x``.
Note:
For integer inputs, ``np.reciprocal`` returns rounded integer output, while
``jnp.reciprocal`` promotes integer inputs to floating point.
Examples:
>>> jnp.reciprocal(2)
Array(0.5, dtype=float32, weak_type=True)
>>> jnp.reciprocal(0.)
Array(inf, dtype=float32, weak_type=True)
>>> x = jnp.array([1, 5., 4.])
>>> jnp.reciprocal(x)
Array([1. , 0.2 , 0.25], dtype=float32)
"""
check_arraylike("reciprocal", x)
x, = promote_dtypes_inexact(x)
return lax.integer_pow(x, -1)
@jit
def sinc(x: ArrayLike, /) -> Array:
r"""Calculate the normalized sinc function.
JAX implementation of :func:`numpy.sinc`.
The normalized sinc function is given by
.. math::
\mathrm{sinc}(x) = \frac{\sin({\pi x})}{\pi x}
where ``sinc(0)`` returns the limit value of ``1``. The sinc function is
smooth and infinitely differentiable.
Args:
x : input array; will be promoted to an inexact type.
Returns:
An array of the same shape as ``x`` containing the result.
Examples:
>>> x = jnp.array([-1, -0.5, 0, 0.5, 1])
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.sinc(x)
Array([-0. , 0.637, 1. , 0.637, -0. ], dtype=float32)
Compare this to the naive approach to computing the function, which is
undefined at zero:
>>> with jnp.printoptions(precision=3, suppress=True):
... jnp.sin(jnp.pi * x) / (jnp.pi * x)
Array([-0. , 0.637, nan, 0.637, -0. ], dtype=float32)
JAX defines a custom gradient rule for sinc to allow accurate evaluation
of the gradient at zero even for higher-order derivatives:
>>> f = jnp.sinc
>>> for i in range(1, 6):
... f = jax.grad(f)
... print(f"(d/dx)^{i} f(0.0) = {f(0.0):.2f}")
...
(d/dx)^1 f(0.0) = 0.00
(d/dx)^2 f(0.0) = -3.29
(d/dx)^3 f(0.0) = 0.00
(d/dx)^4 f(0.0) = 19.48
(d/dx)^5 f(0.0) = 0.00
"""
check_arraylike("sinc", x)
x, = promote_dtypes_inexact(x)
eq_zero = lax.eq(x, _lax_const(x, 0))
pi_x = lax.mul(_lax_const(x, np.pi), x)
safe_pi_x = _where(eq_zero, _lax_const(x, 1), pi_x)
return _where(eq_zero, _sinc_maclaurin(0, pi_x),
lax.div(lax.sin(safe_pi_x), safe_pi_x))
@partial(custom_jvp, nondiff_argnums=(0,))
def _sinc_maclaurin(k, x):
# compute the kth derivative of x -> sin(x)/x evaluated at zero (since we
# compute the monomial term in the jvp rule)
# TODO(mattjj): see https://github.com/jax-ml/jax/issues/10750
if k % 2:
return x * 0
else:
return x * 0 + _lax_const(x, (-1) ** (k // 2) / (k + 1))
@_sinc_maclaurin.defjvp
def _sinc_maclaurin_jvp(k, primals, tangents):
(x,), (t,) = primals, tangents
return _sinc_maclaurin(k, x), _sinc_maclaurin(k + 1, x) * t
def _logical_and_reduce(a: ArrayLike, axis: int = 0, dtype: DTypeLike | None = None,
out: None = None, keepdims: bool = False, initial: ArrayLike | None = None,
where: ArrayLike | None = None):
if initial is not None:
raise ValueError("initial argument not supported in jnp.logical_and.reduce()")
result = reductions.all(a, axis=axis, out=out, keepdims=keepdims, where=where)
return result if dtype is None else result.astype(dtype)
def _logical_or_reduce(a: ArrayLike, axis: int = 0, dtype: DTypeLike | None = None,
out: None = None, keepdims: bool = False, initial: ArrayLike | None = None,
where: ArrayLike | None = None):
if initial is not None:
raise ValueError("initial argument not supported in jnp.logical_or.reduce()")
result = reductions.any(a, axis=axis, out=out, keepdims=keepdims, where=where)
return result if dtype is None else result.astype(dtype)
def _add_at(a: Array, indices: Any, b: ArrayLike):
if a.dtype == bool:
a = a.astype('int32')
b = lax.convert_element_type(b, bool).astype('int32')
return a.at[indices].add(b).astype(bool)
return a.at[indices].add(b)
def _subtract_at(a: Array, indices: Any, b: ArrayLike):
return a.at[indices].subtract(b)
def _multiply_at(a: Array, indices: Any, b: ArrayLike):
if a.dtype == bool:
a = a.astype('int32')
b = lax.convert_element_type(b, bool).astype('int32')
return a.at[indices].mul(b).astype(bool)
else:
return a.at[indices].mul(b)
# Generate ufunc interfaces for several common binary functions.
# We start with binary ufuncs that have well-defined identities.'
# TODO(jakevdp): wrap more ufuncs. Possibly define a decorator for convenience?
# TODO(jakevdp): optimize some implementations.
# - define add.at/multiply.at in terms of scatter_add/scatter_mul
# - define add.reduceat/multiply.reduceat in terms of segment_sum/segment_prod
# - define all monoidal reductions in terms of lax.reduce
add = ufunc(_add, name="add", nin=2, nout=1, identity=0, call=_add, reduce=reductions.sum, accumulate=reductions.cumsum, at=_add_at)
multiply = ufunc(_multiply, name="multiply", nin=2, nout=1, identity=1, call=_multiply, reduce=reductions.prod, accumulate=reductions.cumprod, at=_multiply_at)
bitwise_and = ufunc(_bitwise_and, name="bitwise_and", nin=2, nout=1, identity=-1, call=_bitwise_and)
bitwise_or = ufunc(_bitwise_or, name="bitwise_or", nin=2, nout=1, identity=0, call=_bitwise_or)
bitwise_xor = ufunc(_bitwise_xor, name="bitwise_xor", nin=2, nout=1, identity=0, call=_bitwise_xor)
logical_and = ufunc(_logical_and, name="logical_and", nin=2, nout=1, identity=True, call=_logical_and, reduce=_logical_and_reduce)
logical_or = ufunc(_logical_or, name="logical_or", nin=2, nout=1, identity=False, call=_logical_or, reduce=_logical_or_reduce)
logical_xor = ufunc(_logical_xor, name="logical_xor", nin=2, nout=1, identity=False, call=_logical_xor)
negative = ufunc(_negative, name="negative", nin=1, nout=1, call=_negative)
subtract = ufunc(_subtract, name="subtract", nin=2, nout=1, call=_subtract, at=_subtract_at)