Activation functions#
- flax.experimental.nnx.celu(x, alpha=1.0)[source]#
Continuously-differentiable exponential linear unit activation.
Computes the element-wise function:
\[\begin{split}\mathrm{celu}(x) = \begin{cases} x, & x > 0\\ \alpha \left(\exp(\frac{x}{\alpha}) - 1\right), & x \le 0 \end{cases}\end{split}\]For more information, see Continuously Differentiable Exponential Linear Units.
- Parameters
x – input array
alpha – array or scalar (default: 1.0)
- Returns
An array.
- flax.experimental.nnx.elu(x, alpha=1.0)[source]#
Exponential linear unit activation function.
Computes the element-wise function:
\[\begin{split}\mathrm{elu}(x) = \begin{cases} x, & x > 0\\ \alpha \left(\exp(x) - 1\right), & x \le 0 \end{cases}\end{split}\]- Parameters
x – input array
alpha – scalar or array of alpha values (default: 1.0)
- Returns
An array.
See also
- flax.experimental.nnx.gelu(x, approximate=True)[source]#
Gaussian error linear unit activation function.
If
approximate=False
, computes the element-wise function:\[\mathrm{gelu}(x) = \frac{x}{2} \left(1 + \mathrm{erf} \left( \frac{x}{\sqrt{2}} \right) \right)\]If
approximate=True
, uses the approximate formulation of GELU:\[\mathrm{gelu}(x) = \frac{x}{2} \left(1 + \mathrm{tanh} \left( \sqrt{\frac{2}{\pi}} \left(x + 0.044715 x^3 \right) \right) \right)\]For more information, see Gaussian Error Linear Units (GELUs), section 2.
- Parameters
x – input array
approximate – whether to use the approximate or exact formulation.
- flax.experimental.nnx.glu(x, axis=-1)[source]#
Gated linear unit activation function.
Computes the function:
\[\mathrm{glu}(x) = x\left[\ldots, 0:\frac{n}{2}, \ldots\right] \cdot \mathrm{sigmoid} \left( x\left[\ldots, \frac{n}{2}:n, \ldots\right] \right)\]where the array is split into two along
axis
. The size of theaxis
dimension must be divisible by two.- Parameters
x – input array
axis – the axis along which the split should be computed (default: -1)
- Returns
An array.
See also
- flax.experimental.nnx.hard_sigmoid(x)[source]#
Hard Sigmoid activation function.
Computes the element-wise function
\[\mathrm{hard\_sigmoid}(x) = \frac{\mathrm{relu6}(x + 3)}{6}\]- Parameters
x – input array
- Returns
An array.
See also
relu6()
- flax.experimental.nnx.hard_silu(x)[source]#
Hard SiLU (swish) activation function
Computes the element-wise function
\[\mathrm{hard\_silu}(x) = x \cdot \mathrm{hard\_sigmoid}(x)\]Both
hard_silu()
andhard_swish()
are aliases for the same function.- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.hard_swish(x)#
Hard SiLU (swish) activation function
Computes the element-wise function
\[\mathrm{hard\_silu}(x) = x \cdot \mathrm{hard\_sigmoid}(x)\]Both
hard_silu()
andhard_swish()
are aliases for the same function.- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.hard_tanh(x)[source]#
Hard \(\mathrm{tanh}\) activation function.
Computes the element-wise function:
\[\begin{split}\mathrm{hard\_tanh}(x) = \begin{cases} -1, & x < -1\\ x, & -1 \le x \le 1\\ 1, & 1 < x \end{cases}\end{split}\]- Parameters
x – input array
- Returns
An array.
- flax.experimental.nnx.leaky_relu(x, negative_slope=0.01)[source]#
Leaky rectified linear unit activation function.
Computes the element-wise function:
\[\begin{split}\mathrm{leaky\_relu}(x) = \begin{cases} x, & x \ge 0\\ \alpha x, & x < 0 \end{cases}\end{split}\]where \(\alpha\) =
negative_slope
.- Parameters
x – input array
negative_slope – array or scalar specifying the negative slope (default: 0.01)
- Returns
An array.
See also
- flax.experimental.nnx.log_sigmoid(x)[source]#
Log-sigmoid activation function.
Computes the element-wise function:
\[\mathrm{log\_sigmoid}(x) = \log(\mathrm{sigmoid}(x)) = -\log(1 + e^{-x})\]- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.log_softmax(x, axis=-1, where=None, initial=None)[source]#
Log-Softmax function.
Computes the logarithm of the
softmax
function, which rescales elements to the range \([-\infty, 0)\).\[\mathrm{log\_softmax}(x)_i = \log \left( \frac{\exp(x_i)}{\sum_j \exp(x_j)} \right)\]- Parameters
x – input array
axis – the axis or axes along which the
log_softmax
should be computed. Either an integer or a tuple of integers.where – Elements to include in the
log_softmax
.initial – The minimum value used to shift the input array. Must be present when
where
is not None.
- Returns
An array.
See also
- flax.experimental.nnx.logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False)[source]#
Compute the log of the sum of exponentials of input elements.
LAX-backend implementation of
scipy.special.logsumexp()
.Original docstring below.
- Parameters
a (array_like) – Input array.
axis (None or int or tuple of ints, optional) – Axis or axes over which the sum is taken. By default axis is None, and all elements are summed.
b (array-like, optional) – Scaling factor for exp(a) must be of the same shape as a or broadcastable to a. These values may be negative in order to implement subtraction.
keepdims (bool, optional) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array.
return_sign (bool, optional) – If this is set to True, the result will be a pair containing sign information; if False, results that are negative will be returned as NaN. Default is False (no sign information).
- Returns
res (ndarray) – The result,
np.log(np.sum(np.exp(a)))
calculated in a numerically more stable way. If b is given thennp.log(np.sum(b*np.exp(a)))
is returned. Ifreturn_sign
is True,res
contains the log of the absolute value of the argument.sgn (ndarray) – If
return_sign
is True, this will be an array of floating-point numbers matching res containing +1, 0, -1 (for real-valued inputs) or a complex phase (for complex inputs). This gives the sign of the argument of the logarithm inres
. Ifreturn_sign
is False, only one result is returned.
- flax.experimental.nnx.one_hot(x, num_classes, *, dtype=<class 'jax.numpy.float64'>, axis=-1)[source]#
One-hot encodes the given indices.
Each index in the input
x
is encoded as a vector of zeros of lengthnum_classes
with the element atindex
set to one:>>> jax.nn.one_hot(jnp.array([0, 1, 2]), 3) Array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], dtype=float32)
Indices outside the range [0, num_classes) will be encoded as zeros:
>>> jax.nn.one_hot(jnp.array([-1, 3]), 3) Array([[0., 0., 0.], [0., 0., 0.]], dtype=float32)
- Parameters
x – A tensor of indices.
num_classes – Number of classes in the one-hot dimension.
dtype – optional, a float dtype for the returned values (default
jnp.float_
).axis – the axis or axes along which the function should be computed.
- flax.experimental.nnx.relu(x)[source]#
Rectified linear unit activation function.
Computes the element-wise function:
\[\mathrm{relu}(x) = \max(x, 0)\]except under differentiation, we take:
\[\nabla \mathrm{relu}(0) = 0\]For more information see Numerical influence of ReLU’(0) on backpropagation.
- Parameters
x – input array
- Returns
An array.
Example
>>> jax.nn.relu(jax.numpy.array([-2., -1., -0.5, 0, 0.5, 1., 2.])) Array([0. , 0. , 0. , 0. , 0.5, 1. , 2. ], dtype=float32)
See also
relu6()
- flax.experimental.nnx.selu(x)[source]#
Scaled exponential linear unit activation.
Computes the element-wise function:
\[\begin{split}\mathrm{selu}(x) = \lambda \begin{cases} x, & x > 0\\ \alpha e^x - \alpha, & x \le 0 \end{cases}\end{split}\]where \(\lambda = 1.0507009873554804934193349852946\) and \(\alpha = 1.6732632423543772848170429916717\).
For more information, see Self-Normalizing Neural Networks.
- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.sigmoid(x)[source]#
Sigmoid activation function.
Computes the element-wise function:
\[\mathrm{sigmoid}(x) = \frac{1}{1 + e^{-x}}\]- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.silu(x)[source]#
SiLU (aka swish) activation function.
Computes the element-wise function:
\[\mathrm{silu}(x) = x \cdot \mathrm{sigmoid}(x) = \frac{x}{1 + e^{-x}}\]swish()
andsilu()
are both aliases for the same function.- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.soft_sign(x)[source]#
Soft-sign activation function.
Computes the element-wise function
\[\mathrm{soft\_sign}(x) = \frac{x}{|x| + 1}\]- Parameters
x – input array
- flax.experimental.nnx.softmax(x, axis=-1, where=None, initial=None)[source]#
Softmax function.
Computes the function which rescales elements to the range \([0, 1]\) such that the elements along
axis
sum to \(1\).\[\mathrm{softmax}(x) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}\]- Parameters
x – input array
axis – the axis or axes along which the softmax should be computed. The softmax output summed across these dimensions should sum to \(1\). Either an integer or a tuple of integers.
where – Elements to include in the
softmax
.initial – The minimum value used to shift the input array. Must be present when
where
is not None.
- Returns
An array.
See also
- flax.experimental.nnx.softplus(x)[source]#
Softplus activation function.
Computes the element-wise function
\[\mathrm{softplus}(x) = \log(1 + e^x)\]- Parameters
x – input array
- flax.experimental.nnx.standardize(x, axis=-1, mean=None, variance=None, epsilon=1e-05, where=None)[source]#
Normalizes an array by subtracting
mean
and dividing by \(\sqrt{\mathrm{variance}}\).
- flax.experimental.nnx.swish(x)#
SiLU (aka swish) activation function.
Computes the element-wise function:
\[\mathrm{silu}(x) = x \cdot \mathrm{sigmoid}(x) = \frac{x}{1 + e^{-x}}\]swish()
andsilu()
are both aliases for the same function.- Parameters
x – input array
- Returns
An array.
See also
- flax.experimental.nnx.tanh(x, /)#
Compute hyperbolic tangent element-wise.
LAX-backend implementation of
numpy.tanh()
.Original docstring below.
Equivalent to
np.sinh(x)/np.cosh(x)
or-1j * np.tan(1j*x)
.- Parameters
x (array_like) – Input array.
- Returns
y – The corresponding hyperbolic tangent values. This is a scalar if x is a scalar.
- Return type
ndarray
References
- 1
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. https://personal.math.ubc.ca/~cbm/aands/page_83.htm
- 2
Wikipedia, “Hyperbolic function”, https://en.wikipedia.org/wiki/Hyperbolic_function