Source code for flax.struct

# Copyright 2024 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for defining custom classes that can be used with jax transformations."""

from collections.abc import Callable
import dataclasses
import functools
from typing import TypeVar, overload

import jax
from typing_extensions import (
  dataclass_transform,  # pytype: disable=not-supported-yet
)

from . import serialization

_T = TypeVar('_T')


def field(pytree_node=True, *, metadata=None, **kwargs):
  return dataclasses.field(metadata=(metadata or {}) | {'pytree_node': pytree_node},
                           **kwargs)


@dataclass_transform(field_specifiers=(field,))  # type: ignore[literal-required]
@overload
def dataclass(clz: _T, **kwargs) -> _T:
  ...


@dataclass_transform(field_specifiers=(field,))  # type: ignore[literal-required]
@overload
def dataclass(**kwargs) -> Callable[[_T], _T]:
  ...


[docs]@dataclass_transform(field_specifiers=(field,)) # type: ignore[literal-required] def dataclass( clz: _T | None = None, **kwargs, ) -> _T | Callable[[_T], _T]: """Create a class which can be passed to functional transformations. .. note:: Inherit from ``PyTreeNode`` instead to avoid type checking issues when using PyType. Jax transformations such as ``jax.jit`` and ``jax.grad`` require objects that are immutable and can be mapped over using the ``jax.tree_util`` methods. The ``dataclass`` decorator makes it easy to define custom classes that can be passed safely to Jax. For example:: >>> from flax import struct >>> import jax >>> from typing import Any, Callable >>> @struct.dataclass ... class Model: ... params: Any ... # use pytree_node=False to indicate an attribute should not be touched ... # by Jax transformations. ... apply_fn: Callable = struct.field(pytree_node=False) ... def __apply__(self, *args): ... return self.apply_fn(*args) >>> params = {} >>> params_b = {} >>> apply_fn = lambda v, x: x >>> model = Model(params, apply_fn) >>> # model.params = params_b # Model is immutable. This will raise an error. >>> model_b = model.replace(params=params_b) # Use the replace method instead. >>> # This class can now be used safely in Jax to compute gradients w.r.t. the >>> # parameters. >>> model = Model(params, apply_fn) >>> loss_fn = lambda model: 3. >>> model_grad = jax.grad(loss_fn)(model) Note that dataclasses have an auto-generated ``__init__`` where the arguments of the constructor and the attributes of the created instance match 1:1. This correspondence is what makes these objects valid containers that work with JAX transformations and more generally the ``jax.tree_util`` library. Sometimes a "smart constructor" is desired, for example because some of the attributes can be (optionally) derived from others. The way to do this with Flax dataclasses is to make a static or class method that provides the smart constructor. This way the simple constructor used by ``jax.tree_util`` is preserved. Consider the following example:: >>> @struct.dataclass ... class DirectionAndScaleKernel: ... direction: jax.Array ... scale: jax.Array ... @classmethod ... def create(cls, kernel): ... scale = jax.numpy.linalg.norm(kernel, axis=0, keepdims=True) ... direction = direction / scale ... return cls(direction, scale) Args: clz: the class that will be transformed by the decorator. **kwargs: arguments to pass to the dataclass constructor. Returns: The new class. """ # Support passing arguments to the decorator (e.g. @dataclass(kw_only=True)) if clz is None: return functools.partial(dataclass, **kwargs) # check if already a flax dataclass if '_flax_dataclass' in clz.__dict__: return clz if 'frozen' not in kwargs.keys(): kwargs['frozen'] = True data_clz = dataclasses.dataclass(**kwargs)(clz) # type: ignore meta_fields = [] data_fields = [] for field_info in dataclasses.fields(data_clz): is_pytree_node = field_info.metadata.get('pytree_node', True) if is_pytree_node: data_fields.append(field_info.name) else: meta_fields.append(field_info.name) def replace(self, **updates): """Returns a new object replacing the specified fields with new values.""" return dataclasses.replace(self, **updates) data_clz.replace = replace jax.tree_util.register_dataclass(data_clz, data_fields, meta_fields) def to_state_dict(x): state_dict = { name: serialization.to_state_dict(getattr(x, name)) for name in data_fields } return state_dict def from_state_dict(x, state): """Restore the state of a data class.""" state = state.copy() # copy the state so we can pop the restored fields. updates = {} for name in data_fields: if name not in state: raise ValueError( f'Missing field {name} in state dict while restoring' f' an instance of {clz.__name__},' f' at path {serialization.current_path()}' ) value = getattr(x, name) value_state = state.pop(name) updates[name] = serialization.from_state_dict( value, value_state, name=name ) if state: names = ','.join(state.keys()) raise ValueError( f'Unknown field(s) "{names}" in state dict while' f' restoring an instance of {clz.__name__}' f' at path {serialization.current_path()}' ) return x.replace(**updates) serialization.register_serialization_state( data_clz, to_state_dict, from_state_dict ) # add a _flax_dataclass flag to distinguish from regular dataclasses data_clz._flax_dataclass = True # type: ignore[attr-defined] return data_clz # type: ignore
TNode = TypeVar('TNode', bound='PyTreeNode')
[docs]@dataclass_transform(field_specifiers=(field,)) # type: ignore[literal-required] class PyTreeNode: """Base class for dataclasses that should act like a JAX pytree node. See ``flax.struct.dataclass`` for the ``jax.tree_util`` behavior. This base class additionally avoids type checking errors when using PyType. Example:: >>> from flax import struct >>> import jax >>> from typing import Any, Callable >>> class Model(struct.PyTreeNode): ... params: Any ... # use pytree_node=False to indicate an attribute should not be touched ... # by Jax transformations. ... apply_fn: Callable = struct.field(pytree_node=False) ... def __apply__(self, *args): ... return self.apply_fn(*args) >>> params = {} >>> params_b = {} >>> apply_fn = lambda v, x: x >>> model = Model(params, apply_fn) >>> # model.params = params_b # Model is immutable. This will raise an error. >>> model_b = model.replace(params=params_b) # Use the replace method instead. >>> # This class can now be used safely in Jax to compute gradients w.r.t. the >>> # parameters. >>> model = Model(params, apply_fn) >>> loss_fn = lambda model: 3. >>> model_grad = jax.grad(loss_fn)(model) """ def __init_subclass__(cls, **kwargs): dataclass(cls, **kwargs) # pytype: disable=wrong-arg-types def __init__(self, *args, **kwargs): # stub for pytype raise NotImplementedError def replace(self: TNode, **overrides) -> TNode: # stub for pytype raise NotImplementedError