# Copyright 2023 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JAX transformations on Modules.
Jax functional transformations operate on pure functions.
Flax extends these transformations to also operate on Module's which
have stateful variables and PRNG sequences. We refer to these extended
versions as "lifted transformations".
A lifted transformation can be applied to a ``Module`` class or a
function that takes a ``Module`` instance as its first argument.
"""
import dataclasses
import functools
import inspect
from typing import (
Any,
Callable,
Dict,
Iterable,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypeVar,
Union,
)
import jax
from flax import errors, struct, traceback_util
from flax.core import Scope, lift, meta
from flax.core.frozen_dict import FrozenDict
from flax.linen import module as linen_module
from flax.linen.module import (
Module,
Variable,
_derive_profiling_name,
_get_unbound_fn,
wrap_method_once,
)
traceback_util.register_exclusion(__file__)
# pylint: disable=protected-access,dangerous-default-value
# Utils
# -----------------------------------------------------------------------------
def clean_clone(x):
"""Remove scopes and tracers from children."""
if isinstance(x, Module):
object.__setattr__(
x, 'children', {k: clean_clone(v) for k, v in x.children.items()}
)
object.__setattr__(x, 'scope', None)
return x
@struct.dataclass
class VariablePlaceholder:
"""Used to mark Variables in a JAX-compatible way when lifting arguments."""
collection: str = struct.field(pytree_node=False)
name: str = struct.field(pytree_node=False)
unbox: bool = struct.field(pytree_node=False)
id: int = struct.field(pytree_node=False)
@struct.dataclass
class InstancePlaceholder:
"""Marks module instances in a JAX-compatible way when lifting arguments."""
cls: Type[Any] = struct.field(pytree_node=False)
attrs: Dict[Any, Any] = struct.field(pytree_node=False)
id: int = struct.field(pytree_node=False)
def _memoize_by_id(fn, refs):
"""Memoization by module/variable id to handle aliasing in traversal."""
@functools.wraps(fn)
def wrapped_fn(x):
nonlocal refs
if isinstance(x, (VariablePlaceholder, InstancePlaceholder)):
x_id = x.id
elif isinstance(x, (Variable, Module)):
x_id = x._id
else:
return fn(x)
if x_id not in refs:
refs[x_id] = fn(x)
return refs[x_id]
return wrapped_fn
def get_module_scopes(module, args=None, kwargs=None):
"""Get all scopes on module, including constructor Module arguments.
To properly functionalize a Module that has other bound Modules passed in
"from the outside" as dataclass attributes, we need to traverse all dataclass
fields to find the Scopes associated with the Module. Additionally, because
we allow Modules to be passed inside pytrees on the dataclass attributes, we
must traverse all dataclass attributes as pytrees to find all Modules. We
additionally handle lifting Variables (which are just references to data in
particular scopes) and Module instances that are passed as arguments to
methods.
Args:
module: a bound flax Module.
args: an *args list possibly containing Variables or Module instances
referencing a scope.
kwargs: a **kwargs dict possibly containing Variables or Module instances
referencing a scope.
Returns:
A list of all functional-core Scopes bound on self and inside dataclass
fields as well as any Scopes passed via argument Variables, an updated args
list, and an updated kwargs dict that have both had Variables replaced with
VariablePlaceholders and Module instances replaced with InstancePlaceholders
that are compatible with jax functions.
"""
scopes = []
refs = {}
# Gather scopes associated with Variables and Module instances passed as
# positional and keyword arguments.
@functools.partial(_memoize_by_id, refs=refs)
def get_arg_scope(x):
nonlocal scopes
if isinstance(x, Variable) and isinstance(x.scope, Scope):
scopes.append(x.scope)
return VariablePlaceholder(x.collection, x.name, x.unbox, x._id)
elif isinstance(x, Module) and isinstance(x.scope, Scope):
x._try_setup(shallow=True)
scopes.append(x.scope)
attrs = {
f.name: getattr(x, f.name)
for f in dataclasses.fields(x)
if f.name != 'parent' and f.init
}
attrs = jax.tree_util.tree_map(get_arg_scope, attrs)
return InstancePlaceholder(x.__class__, attrs, x._id)
return x
new_args, new_kwargs = jax.tree_util.tree_map(get_arg_scope, (args, kwargs))
# Gather scopes in Variables and Submodules passed as Module attributes.
@functools.partial(_memoize_by_id, refs=refs)
def get_scopes(module):
nonlocal scopes
module._try_setup(shallow=True)
def get_scopes_inner(x):
nonlocal scopes
if isinstance(x, Module) and isinstance(x.scope, Scope):
get_scopes(x)
elif isinstance(x, Variable) and isinstance(x.scope, Scope):
scopes.append(x.scope)
attrs = {
f.name: getattr(module, f.name)
for f in dataclasses.fields(module)
if f.name != 'parent' and f.init
}
jax.tree_util.tree_map(get_scopes_inner, attrs)
scopes.append(module.scope)
get_scopes(module)
return scopes, new_args, new_kwargs
def set_module_scopes(module, args, kwargs, scopes):
"""Set all scopes on module, including those on Modules in dataclass fields.
To properly functionalize a Module we must also "rehydrate" it with Scopes
from `get_module_scopes`. We need to set scopes not just on the Module but
also on any Module living inside dataclass attributes or even pytrees in its
dataclass attributes. We additionally handle restoring Variables and Module
instances from their placeholders in the method positional and keyword
arguments. The order of traversal through this method is the same as in
`get_module_scopes`, guaranteeing the correct Scopes are applied to each
Module.
Args:
module: a flax Module.
args: an *args list possibly containing VariablePlaceholder or
InstancePlaceholder members.
kwargs: a **kwargs dict possibly containing VariablePlaceholder or
InstancePlaceholder members.
scopes: a list of Scopes corresponding to this Module and its arguments that
was created by the `get_module_scopes` function.
Returns:
A copy of the module with it and its attributes bound to the scopes passed
to this function, an updated args list, and an updated kwargs dict with
updated Variable and Module instance references.
"""
idx = 0
refs = {}
# Set scopes associated with Variables and Module instances passed as
# positional and keyword arguments.
@functools.partial(_memoize_by_id, refs=refs)
def set_arg_scope(x):
nonlocal idx
if isinstance(x, VariablePlaceholder):
new_x = Variable(
scope=scopes[idx], collection=x.collection, name=x.name, unbox=x.unbox
)
idx += 1
return new_x
elif isinstance(x, InstancePlaceholder):
instance_scope = scopes[idx]
idx += 1
instance_attrs = jax.tree_util.tree_map(set_arg_scope, x.attrs)
return x.cls(parent=instance_scope, **instance_attrs)
return x
def is_placeholder(x):
return isinstance(x, (VariablePlaceholder, InstancePlaceholder))
new_args, new_kwargs = jax.tree_util.tree_map(
set_arg_scope, (args, kwargs), is_leaf=is_placeholder
)
# set scopes in Variables and Submodules passed as Module attributes
@functools.partial(_memoize_by_id, refs=refs)
def set_scopes(module):
nonlocal idx
def set_scopes_inner(x):
nonlocal idx
if isinstance(x, Module) and isinstance(x.scope, Scope):
return set_scopes(x)
elif isinstance(x, Variable) and isinstance(x.scope, Scope):
new_x = Variable(
scope=scopes[idx],
collection=x.collection,
name=x.name,
unbox=x.unbox,
)
idx += 1
return new_x
else:
return x
attrs = {
f.name: getattr(module, f.name)
for f in dataclasses.fields(module)
if f.name != 'parent' and f.init
}
new_attrs = jax.tree_util.tree_map(set_scopes_inner, attrs)
new_module = module.clone(parent=scopes[idx], **new_attrs)
idx += 1
return new_module
new_module = set_scopes(module)
assert len(scopes) == idx, f'scope list mismatch {len(scopes)} != {idx}'
return new_module, new_args, new_kwargs
def _test_transformed_return_values(tree, method_name):
"""Tests whether the return value contains any Modules or Variables."""
impure = any(
map(
lambda x: isinstance(x, (Module, Variable)),
jax.tree_util.tree_leaves(tree),
)
)
if impure:
raise errors.TransformedMethodReturnValueError(method_name)
# Class lifting
# -----------------------------------------------------------------------------
def module_class_lift_transform(
transform, module_class, *trafo_args, methods=None, **trafo_kwargs
):
"""Module class lift transform."""
# TODO(marcvanzee): Improve docstrings (#1977).
# TODO(levskaya): find nicer argument convention for multi-method case?
# Prepare per-method transform args, kwargs.
if methods is None:
# Default case, just transform __call__
class_trafo_args = {'__call__': (trafo_args, trafo_kwargs)}
elif isinstance(methods, (list, tuple)):
# Transform every method in methods with given args, kwargs.
class_trafo_args = {m: (trafo_args, trafo_kwargs) for m in methods}
elif isinstance(methods, dict):
# Pass different trafo args per each method.
class_trafo_args = {k: ((), v) for k, v in methods.items()}
else:
raise ValueError(
'transform methods argument must be None, tuple, list, or dict.'
)
# Handle partially initialized module class constructors.
if isinstance(module_class, functools.partial) and issubclass(
module_class.func, Module
):
partial_object = module_class
module_class = module_class.func
else:
partial_object = None
def create_trans_fn(fn_name, fn_trafo_args):
# get existing unbound method from class
fn = getattr(module_class, fn_name)
trafo_args, trafo_kwargs = fn_trafo_args
# we need to create a scope-function from our class for the given method
@functools.wraps(fn)
def wrapped_fn(self, *args, **kwargs):
state = self._state.export()
# make a scope-function to transform
def core_fn(scopes, *args, **kwargs):
# make a clone of self using its arguments
attrs = {
f.name: getattr(self, f.name)
for f in dataclasses.fields(self)
if f.name != 'parent' and f.init
}
# we reference module_class, not self.__class__ to avoid infinite loop
cloned = module_class(parent=None, **attrs)
cloned, args, kwargs = set_module_scopes(cloned, args, kwargs, scopes)
object.__setattr__(cloned, '_state', state.export())
res = fn(cloned, *args, **kwargs)
self._state.reimport(cloned._state)
_test_transformed_return_values(res, fn_name)
return res
# here we apply the given lifting transform to the scope-ingesting fn
trafo_fn = transform(core_fn, *trafo_args, **trafo_kwargs)
module_scopes, args, kwargs = get_module_scopes(self, args, kwargs)
ret = trafo_fn(module_scopes, *args, **kwargs)
return ret
return wrapped_fn
transformed_fns = {
fn_name: create_trans_fn(fn_name, fn_trafo_args)
for fn_name, fn_trafo_args in class_trafo_args.items()
}
# construct new dynamic class w. transformed methods
transformed_cls = type(
transform.__name__.capitalize() + module_class.__name__,
(module_class,),
transformed_fns,
)
# Handle partially initialized module class constructors.
if partial_object is not None:
transformed_cls = functools.partial(
transformed_cls, *partial_object.args, **partial_object.keywords
)
return transformed_cls
# Function lifting as decorator on methods __inside__ class definition.
# -----------------------------------------------------------------------------
def decorator_lift_transform(
transform, class_fn, *trafo_args, multi_scope=True, **trafo_kwargs
):
"""Decorator for lifted transform."""
# TODO(marcvanzee): Improve docstrings (#1977).
# Due to the ordering of method decorators, we must wrap the class_fn
# with the module state management wrapper first to maintain Module state
# correctly.
if isinstance(class_fn, tuple):
class_fns = class_fn
else:
class_fns = (class_fn,)
prewrapped_fns = [wrap_method_once(class_fn) for class_fn in class_fns]
@functools.wraps(prewrapped_fns[0])
def wrapped_fn(self, *args, **kwargs):
state = self._state.export()
# make a scope-function to transform
def core_fn(prewrapped_fn, class_fn, scopes, *args, **kwargs):
if not multi_scope:
scopes = [scopes]
cloned, args, kwargs = set_module_scopes(self, args, kwargs, scopes)
object.__setattr__(cloned, '_state', state.export())
res = prewrapped_fn(cloned, *args, **kwargs)
self._state.reimport(cloned._state)
_test_transformed_return_values(res, getattr(class_fn, '__name__', None))
return res
core_fns = [
functools.partial(core_fn, prewrapped_fn, class_fn)
for prewrapped_fn, class_fn in zip(prewrapped_fns, class_fns)
]
# here we apply the given lifting transform to the scope-ingesting fn
trafo_fn = transform(*core_fns, *trafo_args, **trafo_kwargs)
module_scopes, args, kwargs = get_module_scopes(self, args, kwargs)
if not multi_scope:
if len(module_scopes) != 1:
# TODO(levskaya): transforms like jvp & vjp have args that follow the
# pytree structure of scopes. The user doesn't explicitly control shared
# modules passed as arguments to methods or as attributes to Module
# constructors. Therefore, there is no obvious API for specifying
# arguments per lifted Module.
raise NotImplementedError(
'This transform does not yet support'
' Modules that include other Modules passed as arguments.'
)
module_scopes = module_scopes[0]
return trafo_fn(module_scopes, *args, **kwargs)
return wrapped_fn
# Utility to wrap a class or to use as decorator in def of class method.
# -----------------------------------------------------------------------------
TransformTarget = Union[Type[Module], Callable[..., Any]]
Target = TypeVar('Target', bound=TransformTarget)
def _is_module_class(target: TransformTarget) -> bool:
return (
inspect.isclass(target)
and issubclass(target, Module)
or (isinstance(target, functools.partial))
and _is_module_class(target.func)
)
def lift_transform(
transform, target, *trafo_args, methods=None, **trafo_kwargs
):
"""Applies to class or as a decorator on class fns."""
# TODO(marcvanzee): Improve docstrings (#1977).
if _is_module_class(target):
return module_class_lift_transform(
transform, target, *trafo_args, methods=methods, **trafo_kwargs
)
# we presume this is being used as a function decorator in class definition
elif callable(target) and not isinstance(target, Module):
return decorator_lift_transform(
transform, target, *trafo_args, **trafo_kwargs
)
else:
raise errors.TransformTargetError(target)
def lift_direct_transform(
transform: Callable[..., Any],
targets: Tuple[Callable[..., Any], ...],
mdl: Module,
*args,
multi_scope=True,
**kwargs,
):
"""Lift direct transform."""
# TODO(marcvanzee): Improve docstrings (#1977).
for target in targets:
if _is_module_class(target):
raise ValueError(
f'The {transform.__name__} transform can only be applied on a Module'
' method. That is function that takes a Module instance as its first'
' arg.'
)
elif not callable(target):
raise ValueError('transform target must be callable')
# normalize self.foo bound methods to class.foo unbound methods.
targets = tuple(_get_unbound_fn(target) for target in targets)
aug_transform = lambda *fns: functools.partial(transform, *fns)
return decorator_lift_transform(
aug_transform, targets, multi_scope=multi_scope
)(mdl, *args, **kwargs)
[docs]def vmap(
target: Target,
variable_axes: Mapping[lift.CollectionFilter, lift.InOutAxis] = FrozenDict(),
split_rngs: Mapping[lift.PRNGSequenceFilter, bool] = FrozenDict(),
in_axes=0,
out_axes=0,
axis_size: Optional[int] = None,
axis_name: Optional[str] = None,
spmd_axis_name: Optional[str] = None,
metadata_params: Mapping[Any, Any] = {},
methods=None,
) -> Target:
"""A lifted version of ``jax.vmap``.
See ``jax.vmap`` for the unlifted batch transform in Jax.
``vmap`` can be used to add a batch axis to a ``Module``.
For example we could create a version of ``Dense`` with
a batch axis that does not share parameters::
>>> import flax.linen as nn
>>> BatchDense = nn.vmap(
... nn.Dense,
... in_axes=0, out_axes=0,
... variable_axes={'params': 0},
... split_rngs={'params': True})
By using ``variable_axes={'params': 0}``, we indicate that the
parameters themselves are mapped over and therefore not shared along
the mapped axis. Consequently, we also split the 'params' RNG,
otherwise the parameters would be initialized identically along
the mapped axis.
Similarly, ``vmap`` could be used to add a batch axis with parameter
sharing::
>>> import flax.linen as nn
>>> BatchDense = nn.vmap(
... nn.Dense,
... in_axes=0, out_axes=0,
... variable_axes={'params': None},
... split_rngs={'params': False})
Here we use ``variable_axes={'params': None}`` to indicate the parameter
variables are shared along the mapped axis. Consequently, the 'params'
RNG must also be shared.
Args:
target: a ``Module`` or a function taking a ``Module`` as its first
argument.
variable_axes: the variable collections that are lifted into the batching
transformation. Use `None` to indicate a broadcasted collection or an
integer to map over an axis.
split_rngs: Split PRNG sequences will be different for each index of the
batch dimension. Unsplit PRNGs will be broadcasted.
in_axes: Specifies the mapping of the input arguments (see `jax.vmap`).
out_axes: Specifies the mapping of the return value (see `jax.vmap`).
axis_size: Specifies the size of the batch axis. This only needs to be
specified if it cannot be derived from the input arguments.
axis_name: Specifies a name for the batch axis. Can be used together with
parallel reduction primitives (e.g. `jax.lax.pmean`, `jax.lax.ppermute`,
etc.). Note, this is only used for pmap and shard map. For SPMD jit, you
do not need to manually synchronize. Just make sure that the axes are
correctly annotated and XLA:SPMD will insert the necessary collectives.
methods: If `target` is a `Module`, the methods of `Module` to vmap over.
spmd_axis_name: Axis name added to any pjit sharding constraints appearing
in `fn`. See also
https://github.com/google/flax/blob/main/flax/linen/partitioning.py.
metadata_params: arguments dict passed to AxisMetadata instances in the
variable tree.
Returns:
A batched/vectorized version of ``target``, with the same arguments but with
extra axes at positions indicated by ``in_axes``, and the same return value,
but with extra axes at positions indicated by ``out_axes``.
"""
return lift_transform(
lift.vmap,
target,
variable_axes,
split_rngs,
methods=methods,
in_axes=in_axes,
out_axes=out_axes,
axis_size=axis_size,
axis_name=axis_name,
metadata_params=metadata_params,
spmd_axis_name=spmd_axis_name,
)
[docs]def jit(
target: Target,
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
static_argnums: Union[int, Iterable[int]] = (),
donate_argnums: Union[int, Iterable[int]] = (),
device=None,
backend: Union[str, None] = None,
methods=None,
) -> Target:
"""Lifted version of ``jax.jit``.
Args:
target: a ``Module`` or a function taking a ``Module``
as its first argument.
variables: The variable collections that are lifted. By default all
collections are lifted.
rngs: The PRNG sequences that are lifted. By default all PRNG sequences
are lifted.
static_argnums: An int or collection of ints specifying which positional
arguments to treat as static (compile-time constant). Operations that only
depend on static arguments will be constant-folded in Python (during
tracing), and so the corresponding argument values can be any Python
object. Static arguments should be hashable, meaning both ``__hash__`` and
``__eq__`` are implemented, and immutable. Calling the jitted function
with different values for these constants will trigger recompilation. If
the jitted function is called with fewer positional arguments than
indicated by ``static_argnums`` then an error is raised. Arguments that
are not arrays or containers thereof must be marked as static.
Defaults to ().
donate_argnums: Specify which arguments are "donated" to the computation.
It is safe to donate arguments if you no longer need them once the
computation has finished. In some cases XLA can make use of donated
buffers to reduce the amount of memory needed to perform a computation,
for example recycling one of your input buffers to store a result. You
should not reuse buffers that you donate to a computation, JAX will raise
an error if you try to.
device: This is an experimental feature and the API is likely to change.
Optional, the Device the jitted function will run on. (Available devices
can be retrieved via :py:func:`jax.devices`.) The default is inherited
from XLA's DeviceAssignment logic and is usually to use
``jax.devices()[0]``.
backend: a string representing the XLA backend: ``'cpu'``, ``'gpu'``, or
``'tpu'``.
methods: If `target` is a `Module`, the methods of `Module` to jit.
Returns:
A wrapped version of target, set up for just-in-time compilation.
"""
return lift_transform(
lift.jit,
target,
variables=variables,
rngs=rngs,
static_argnums=static_argnums,
donate_argnums=donate_argnums,
device=device,
backend=backend,
methods=methods,
)
def checkpoint(
target: Target,
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
concrete: bool = False,
prevent_cse: bool = True,
static_argnums: Union[int, Tuple[int, ...]] = (),
policy: Optional[Callable[..., bool]] = None,
methods=None,
) -> Target:
"""Lifted version of ``jax.checkpoint``.
Checkpointing is a technique for reducing memory usage by recomputing
activations during backpropagation. When training large models, it can be
helpful to checkpoint parts of the model to trade off memory usage for
additional computation.
Example::
>>> import jax
>>> import jax.numpy as jnp
>>> import flax.linen as nn
...
>>> class CheckpointedMLP(nn.Module):
... @nn.compact
... def __call__(self, x):
... CheckpointDense = nn.checkpoint(nn.Dense)
... x = CheckpointDense(128)(x)
... x = nn.relu(x)
... x = CheckpointDense(1)(x)
... return x
...
>>> model = CheckpointedMLP()
>>> variables = model.init(jax.random.key(0), jnp.ones((1, 16)))
This function is aliased to ``remat`` just like ``jax.remat``.
Args:
target: a ``Module`` or a function taking a ``Module``
as its first argument. intermediate computations will be
re-computed when computing gradients for the target.
variables: The variable collections that are lifted. By default all
collections are lifted.
rngs: The PRNG sequences that are lifted. By default all PRNG sequences
are lifted.
concrete: Optional, boolean indicating whether ``fun`` may involve
value-dependent Python control flow (default False). Support for such
control flow is optional, and disabled by default, because in some
edge-case compositions with :func:`jax.jit` it can lead to some extra
computation.
prevent_cse: Optional, boolean indicating whether to prevent common
subexpression elimination (CSE) optimizations in the HLO generated from
differentiation. This CSE prevention has costs because it can foil other
optimizations, and because it can incur high overheads on some backends,
especially GPU. The default is True because otherwise, under a ``jit`` or
``pmap``, CSE can defeat the purpose of this decorator. But in some
settings, like when used inside a ``scan``, this CSE prevention mechanism
is unnecessary, in which case ``prevent_cse`` should be set to False.
static_argnums: Optional, int or sequence of ints, indicates which argument
values on which to specialize for tracing and caching purposes. Specifying
arguments as static can avoid ConcretizationTypeErrors when tracing, but
at the cost of more retracing overheads.
policy: Experimental checkpoint policy, see ``jax.checkpoint``.
methods: An optional list of method names that will be lifted, if `methods`
is None (default) only the `__call__` method will be lifted. If `target`
is a function, `methods` is ignored.
Returns:
A wrapped version of ``target``. When computing gradients intermediate
computations will be re-computed on the backward pass.
"""
# subtract 1 from each static_argnums because 'self' is not passed to the
# lifted function
static_argnums = jax.tree_util.tree_map(lambda x: x - 1, static_argnums)
return lift_transform(
lift.checkpoint,
target,
variables=variables,
rngs=rngs,
concrete=concrete,
static_argnums=static_argnums,
prevent_cse=prevent_cse,
policy=policy,
methods=methods,
)
remat = checkpoint
[docs]def remat_scan(
target: Target,
lengths: Optional[Sequence[int]] = (),
policy: Optional[Callable[..., bool]] = None,
variable_broadcast: lift.CollectionFilter = False,
variable_carry: lift.CollectionFilter = False,
variable_axes: Mapping[
lift.CollectionFilter, lift.InOutScanAxis
] = FrozenDict({True: 0}),
split_rngs: Mapping[lift.PRNGSequenceFilter, bool] = FrozenDict({True: True}),
) -> Target:
"""Combines remat and scan for memory efficiency and constant time compilation.
``remat_scan`` allows for constant compile times and sublinear
memory usage with respect to model depth. At a small constant
penalty. This is typically beneficial for very deep models.
Example::
>>> import flax.linen as nn
>>> class BigModel(nn.Module):
... @nn.compact
... def __call__(self, x):
... DenseStack = nn.remat_scan(nn.Dense, lengths=(10, 10))
... # 100x dense with O(sqrt(N)) memory for gradient computation
... return DenseStack(8, name="dense_stack")(x)
Args:
target: a ``Module`` or a function taking a ``Module`` as its first
argument.
lengths: number of loop iterations at the given level. The total number of
iterations `n = prod(lengths)`. each loop is rematerialized. This way the
memory consumption is proportional to `n^(1 / d)` where `d =
len(lengths)`. Minimal memory consumptions requires tuning the lengths
such that the same amount of memory is consumed at each level of the
nested loop.
policy: Experimental checkpoint policy, see ``jax.checkpoint``.
variable_broadcast: Specifies the broadcasted variable collections. A
broadcasted variable should not depend on any computation that cannot be
lifted out of the loop. This is typically used to define shared parameters
inside the fn.
variable_carry: Specifies the variable collections that are carried through
the loop. Mutations to these variables are carried to the next iteration
and will be preserved when the scan finishes.
variable_axes: the variable collections that are scanned over. Defaults to
``{True: 0}``.
split_rngs: Split PRNG sequences will be different for each loop iterations.
If split is False the PRNGs will be the same across iterations. Defaults
to ``{True: True}``.
Returns:
A wrapped version of ``target`` that repeats itself prod(lengths) times.
"""
return lift_transform(
lift.remat_scan,
target,
lengths=lengths,
variable_broadcast=variable_broadcast,
variable_carry=variable_carry,
variable_axes=variable_axes,
split_rngs=split_rngs,
policy=policy,
)
[docs]def scan(
target: Target,
variable_axes: Mapping[
lift.CollectionFilter, lift.InOutScanAxis
] = FrozenDict(),
variable_broadcast: lift.CollectionFilter = False,
variable_carry: lift.CollectionFilter = False,
split_rngs: Mapping[lift.PRNGSequenceFilter, bool] = FrozenDict(),
in_axes=0,
out_axes=0,
length: Optional[int] = None,
reverse: bool = False,
unroll: int = 1,
data_transform: Optional[Callable[..., Any]] = None,
metadata_params: Mapping[Any, Any] = {},
methods=None,
) -> Target:
"""A lifted version of ``jax.lax.scan``.
See ``jax.lax.scan`` for the unlifted scan in Jax.
To improve consistency with ``vmap``, this version of scan
uses ``in_axes`` and ``out_axes`` to determine which arguments
are scanned over and along which axis.
``scan`` distinguishes between 3 different types of values inside the loop:
#. **scan**: a value that is iterated over in a loop. All scan values must
have the same size in the axis they are scanned over. Scanned outputs
will be stacked along the scan axis.
#. **carry**: A carried value is updated at each loop iteration. It must
have the same shape and dtype throughout the loop.
#. **broadcast**: a value that is closed over by the loop. When a variable
is broadcasted they are typically initialized inside the loop body but
independent of the loop variables.
The ``target`` should have the signature
``(module, carry, *xs) -> (carry, ys)``, where ``xs`` and ``ys``
are the scan values that go in and out of the loop.
Example::
>>> import flax.linen as nn
>>> import jax
>>> import jax.numpy as jnp
...
>>> class LSTM(nn.Module):
... features: int
...
... @nn.compact
... def __call__(self, x):
... ScanLSTM = nn.scan(
... nn.LSTMCell, variable_broadcast="params",
... split_rngs={"params": False}, in_axes=1, out_axes=1)
...
... lstm = ScanLSTM(self.features)
... input_shape = x[:, 0].shape
... carry = lstm.initialize_carry(jax.random.key(0), input_shape)
... carry, x = lstm(carry, x)
... return x
...
>>> x = jnp.ones((4, 12, 7))
>>> module = LSTM(features=32)
>>> y, variables = module.init_with_output(jax.random.key(0), x)
Note that when providing a function to ``nn.scan``, the scanning happens over
all arguments starting from the third argument, as specified by ``in_axes``.
The previous example could also be written using the functional form as::
>>> class LSTM(nn.Module):
... features: int
...
... @nn.compact
... def __call__(self, x):
...
... cell = nn.LSTMCell(self.features)
... def body_fn(cell, carry, x):
... carry, y = cell(carry, x)
... return carry, y
... scan = nn.scan(
... body_fn, variable_broadcast="params",
... split_rngs={"params": False}, in_axes=1, out_axes=1)
...
... input_shape = x[:, 0].shape
... carry = cell.initialize_carry(
... jax.random.key(0), input_shape)
... carry, x = scan(cell, carry, x)
... return x
...
>>> module = LSTM(features=32)
>>> variables = module.init(jax.random.key(0), jnp.ones((4, 12, 7)))
You can also use ``scan`` to reduce the compilation time of your JAX program
by merging multiple layers into a single scan loop, you can do this when
you have a sequence of identical layers that you want to apply iteratively
to an input. For example::
>>> class ResidualMLPBlock(nn.Module):
... @nn.compact
... def __call__(self, x, _):
... h = nn.Dense(features=2)(x)
... h = nn.relu(h)
... return x + h, None
...
>>> class ResidualMLP(nn.Module):
... n_layers: int = 4
...
... @nn.compact
... def __call__(self, x):
... ScanMLP = nn.scan(
... ResidualMLPBlock, variable_axes={'params': 0},
... variable_broadcast=False, split_rngs={'params': True},
... length=self.n_layers)
... x, _ = ScanMLP()(x, None)
... return x
...
>>> model = ResidualMLP(n_layers=4)
>>> variables = model.init(jax.random.key(42), jnp.ones((1, 2)))
To reduce both compilation and memory usage, you can use :func:`remat_scan`
which will in addition checkpoint each layer in the scan loop.
Args:
target: a ``Module`` or a function taking a ``Module`` as its first
argument.
variable_axes: the variable collections that are scanned over.
variable_broadcast: Specifies the broadcasted variable collections. A
broadcasted variable should not depend on any computation that cannot be
lifted out of the loop. This is typically used to define shared parameters
inside the fn.
variable_carry: Specifies the variable collections that are carried through
the loop. Mutations to these variables are carried to the next iteration
and will be preserved when the scan finishes.
split_rngs: Split PRNG sequences will be different for each loop iterations.
If split is False the PRNGs will be the same across iterations.
in_axes: Specifies the axis to scan over for the arguments. Should be a
prefix tree of the arguments. Use `flax.core.broadcast` to feed an entire
input to each iteration of the scan body.
out_axes: Specifies the axis to scan over for the return value. Should be a
prefix tree of the return value.
length: Specifies the number of loop iterations. This only needs to be
specified if it cannot be derived from the scan arguments.
reverse: If true, scan from end to start in reverse order.
unroll: how many scan iterations to unroll within a single iteration of a
loop (default: 1).
data_transform: optional function to transform raw functional-core variable
and rng groups inside lifted scan body_fn, intended for inline SPMD
annotations.
metadata_params: arguments dict passed to AxisMetadata instances in the
variable tree.
methods: If `target` is a `Module`, the methods of `Module` to scan over.
Returns:
The scan function with the signature ``(module, carry, *xs) -> (carry,
ys)``, where ``xs`` and ``ys`` are the scan values that go in and out of
the loop.
"""
return lift_transform(
lift.scan,
target,
variable_axes=variable_axes,
variable_broadcast=variable_broadcast,
variable_carry=variable_carry,
split_rngs=split_rngs,
in_axes=in_axes,
out_axes=out_axes,
length=length,
reverse=reverse,
unroll=unroll,
data_transform=data_transform,
metadata_params=metadata_params,
methods=methods,
)
[docs]def map_variables(
target: Target,
mapped_collections: lift.CollectionFilter = True,
trans_in_fn: Callable[..., Any] = lift.id_fn,
trans_out_fn: Callable[..., Any] = lift.id_fn,
init: bool = False,
mutable: bool = False,
rngs: lift.PRNGSequenceFilter = True,
variables: lift.CollectionFilter = True,
methods=None,
) -> Target:
"""Map Variables inside a module.
``map_variables`` can be used to transform the variables inside a module
both before and after the module is applied. This is useful among other
things for masking the weights of a module without having to modify the
module itself.
Example::
>>> import jax
>>> import jax.numpy as jnp
>>> import flax.linen as nn
...
>>> class CausalDense(nn.Module):
... '''A dense layer that masks the weights such that the output is
... causal, i.e. output i only depends on input <= i.
... '''
... features: int
...
... def apply_mask(self, variables):
... return (jax.tree_map(jnp.triu, variables)
... if not self.is_initializing() else variables)
...
... def setup(self):
... # temporary class
... _CausalDense = nn.map_variables(
... nn.Dense, 'params', self.apply_mask, init=self.is_initializing())
... self.dense = _CausalDense(features=self.features, use_bias=False)
...
... def __call__(self, x):
... return self.dense(x)
...
>>> module = CausalDense(features=5)
>>> variables = module.init(jax.random.key(0), jnp.ones((1, 5)))
Args:
target: the module or function to be transformed.
mapped_collections: the collection(s) to be transformed.
trans_in_fn: modifies the variables before applying the module or function.
trans_out_fn: modifies the variables after applying the module or function,
it is only applied if either ``init`` or ``mutable`` are not False.
init: If True, variables are initialized before transformation.
mutable: If True, the mapped variable collections will be mutable.
rngs: PRNGSequences added to the transformed scope (default: all).
variables: Additional Variable collections added to the transformed scope.
Besides those specified by `target` (default: all).
methods: If `target` is a `Module`, the methods of `Module` to map variables
for.
Returns:
a wrapped version of ``target`` that will map the specified collections.
"""
return lift_transform(
lift.map_variables,
target,
mapped_collections,
trans_in_fn,
trans_out_fn,
init,
mutable,
rngs,
variables,
methods=methods,
)
[docs]def vjp(
fn: Callable[..., Any],
mdl: Module,
*primals,
has_aux: bool = False,
reduce_axes=(),
vjp_variables: lift.CollectionFilter = 'params',
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
multi_scope: bool = False,
):
"""A lifted version of ``jax.vjp``.
See ``jax.vjp`` for the unlifted vector-Jacobiam product (backward gradient).
Note that a gradient is returned for all variables in the collections
specified by `vjp_variables`. However, the backward funtion only expects
a cotangent for the return value of `fn`. If variables require a co-tangent
as well they can be returned from `fn` using `Module.variables`.
Example::
>>> import flax.linen as nn
>>> import jax.numpy as jnp
>>> class LearnScale(nn.Module):
... @nn.compact
... def __call__(self, x, y):
... p = self.param('scale', nn.initializers.zeros_init(), ())
... return p * x * y
>>> class Foo(nn.Module):
... @nn.compact
... def __call__(self, x, y):
... z, bwd = nn.vjp(lambda mdl, x, y: mdl(x, y), LearnScale(), x, y)
... params_grad, x_grad, y_grad = bwd(jnp.ones(z.shape))
... return z, params_grad, x_grad, y_grad
Args:
fn: Function to be differentiated. Its arguments should be arrays, scalars,
or standard Python containers of arrays or scalars. It should return an
array, scalar, or standard Python container of arrays or scalars. It will
receive the scope and primals as arguments.
mdl: The module of which the variables will be differentiated.
*primals: A sequence of primal values at which the Jacobian of ``fn``
should be evaluated. The length of ``primals`` should be equal to the
number of positional parameters to ``fn``. Each primal value should be a
tuple of arrays, scalar, or standard Python containers thereof.
has_aux: Optional, bool. Indicates whether ``fn`` returns a pair where the
first element is considered the output of the mathematical function to be
differentiated and the second element is auxiliary data. Default False.
reduce_axes: Optional, tuple of axis names. If an axis is listed here, and
``fn`` implicitly broadcasts a value over that axis, the backward pass
will perform a ``psum`` of the corresponding gradient. Otherwise, the
VJP will be per-example over named axes. For example, if ``'batch'``
is a named batch axis, ``vjp(f, *args, reduce_axes=('batch',))`` will
create a VJP function that sums over the batch while ``vjp(f, *args)``
will create a per-example VJP.
vjp_variables: The vjpfun will return a cotangent vector for all
variable collections specified by this filter.
variables: other variables collections that are available inside `fn` but
do not receive a cotangent.
rngs: the prngs that are available inside `fn`.
multi_scope: for Modules containing multiple scopes from outside modules passed in,
allow for variable gradients to be returned for multiple scopes instead of erroring.
Returns:
If ``has_aux`` is ``False``, returns a ``(primals_out, vjpfun)`` pair, where
``primals_out`` is ``fn(*primals)``.
``vjpfun`` is a function from a cotangent vector with the same shape as
``primals_out`` to a tuple of cotangent vectors with the same shape as
``primals``, representing the vector-Jacobian product of ``fn`` evaluated at
``primals``. If ``has_aux`` is ``True``, returns a
``(primals_out, vjpfun, aux)`` tuple where ``aux`` is the auxiliary data
returned by ``fn``.
"""
return lift_direct_transform(
lift.vjp,
(fn,),
mdl,
*primals,
multi_scope=multi_scope,
has_aux=has_aux,
reduce_axes=reduce_axes,
vjp_variables=vjp_variables,
variables=variables,
rngs=rngs,
)
[docs]def value_and_grad(
fn: Callable[..., Any],
mdl: Module,
*primals,
has_aux: bool = False,
reduce_axes=(),
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
):
"""A limited, lifted equivalent of ``jax.value_and_grad``.
Note that for this convenience function, gradients are only calculated for
the function inputs, and not with respect to any module variables. The
target function must return a scalar-valued output. For a more general
lifted vjp, see ``nn.vjp`` for the lifted vector-Jacobiam product.
Example::
class LearnScale(nn.Module):
@nn.compact
def __call__(self, x, y):
p = self.param('scale', nn.initializers.zeros_init(), ())
return p * x * y
class Foo(nn.Module):
@nn.compact
def __call__(self, x, y):
z, (x_grad, y_grad) = nn.value_and_grad(
lambda mdl, x, y: mdl(x, y), LearnScale(), x, y)
return z, x_grad, y_grad
Args:
fn: Function to be differentiated. Its arguments should be arrays, scalars,
or standard Python containers of arrays or scalars. It should return an
array, scalar, or standard Python container of arrays or scalars. It will
receive the scope and primals as arguments.
mdl: The module of which the variables will be differentiated.
*primals: A sequence of primal values at which the Jacobian of ``fn``
should be evaluated. The length of ``primals`` should be equal to the
number of positional parameters to ``fn``. Each primal value should be a
tuple of arrays, scalar, or standard Python containers thereof.
has_aux: Optional, bool. Indicates whether ``fn`` returns a pair where the
first element is considered the output of the mathematical function to be
differentiated and the second element is auxiliary data. Default False.
reduce_axes: Optional, tuple of axis names. If an axis is listed here, and
``fn`` implicitly broadcasts a value over that axis, the backward pass
will perform a ``psum`` of the corresponding gradient. Otherwise, the
grad will be per-example over named axes. For example, if ``'batch'``
is a named batch axis, ``vjp(f, *args, reduce_axes=('batch',))`` will
create a grad function that sums over the batch while ``grad(f, *args)``
will create a per-example grad.
variables: variables collections that are available inside `fn` but
do not receive a cotangent.
rngs: the prngs that are available inside `fn`.
Returns:
If ``has_aux`` is ``False``, returns a ``primals_out, grads`` pair, where
``primals_out`` is ``fn(*primals)``. ``grads`` are the gradients for the
corresponding primals and do not include the gradients for module variables.
If ``has_aux`` is ``True``, returns a
``(primals_out, aux), grads`` tuple where ``aux`` is the auxiliary data
returned by ``fn``.
"""
grad_partial = functools.partial(
lift_direct_transform,
lift.value_and_grad,
(fn,),
mdl,
*primals,
has_aux=has_aux,
reduce_axes=reduce_axes,
variables=variables,
rngs=rngs,
)
if has_aux:
out, aux, argument_grads = grad_partial()
if out.shape != ():
raise ValueError(
'grad can only work on functions with '
f'scalar-valued outputs. out shape={out.shape}'
)
return (out, aux), argument_grads
else:
out, argument_grads = grad_partial()
if out.shape != ():
raise ValueError(
'grad can only work on functions with '
f'scalar-valued outputs. out shape={out.shape}'
)
return out, argument_grads
[docs]def grad(
fn: Callable[..., Any],
mdl: Module,
*primals,
has_aux: bool = False,
reduce_axes=(),
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
):
"""A limited, lifted equivalent of ``jax.grad``.
Note that for this convenience function, gradients are only calculated for
the function inputs, and not with respect to any module variables. The
target function must return a scalar-valued output. For a more general
lifted vjp, see ``nn.vjp`` for the lifted vector-Jacobiam product.
Example::
class LearnScale(nn.Module):
@nn.compact
def __call__(self, x, y):
p = self.param('scale', nn.initializers.zeros_init(), ())
return p * x * y
class Foo(nn.Module):
@nn.compact
def __call__(self, x, y):
x_grad, y_grad = nn.grad(
lambda mdl, x, y: mdl(x, y), LearnScale(), x, y)
return x_grad, y_grad
Args:
fn: Function to be differentiated. Its arguments should be arrays, scalars,
or standard Python containers of arrays or scalars. It should return an
array, scalar, or standard Python container of arrays or scalars. It will
receive the scope and primals as arguments.
mdl: The module of which the variables will be differentiated.
*primals: A sequence of primal values at which the Jacobian of ``fn``
should be evaluated. The length of ``primals`` should be equal to the
number of positional parameters to ``fn``. Each primal value should be a
tuple of arrays, scalar, or standard Python containers thereof.
has_aux: Optional, bool. Indicates whether ``fn`` returns a pair where the
first element is considered the output of the mathematical function to be
differentiated and the second element is auxiliary data. Default False.
reduce_axes: Optional, tuple of axis names. If an axis is listed here, and
``fn`` implicitly broadcasts a value over that axis, the backward pass
will perform a ``psum`` of the corresponding gradient. Otherwise, the
grad will be per-example over named axes. For example, if ``'batch'``
is a named batch axis, ``vjp(f, *args, reduce_axes=('batch',))`` will
create a grad function that sums over the batch while ``grad(f, *args)``
will create a per-example grad.
variables: variables collections that are available inside `fn` but
do not receive a cotangent.
rngs: the prngs that are available inside `fn`.
Returns:
If ``has_aux`` is ``False``, returns ``grads``, where ``grads`` are the
gradients for the corresponding primals and do not include the gradients
for module variables.
If ``has_aux`` is ``True``, returns a
``(grads, aux)`` tuple where ``aux`` is the auxiliary data
returned by ``fn``.
"""
value_and_grad_partial = functools.partial(
value_and_grad,
fn,
mdl,
*primals,
has_aux=has_aux,
reduce_axes=reduce_axes,
variables=variables,
rngs=rngs,
)
if has_aux:
(_, aux), argument_grads = value_and_grad_partial()
return argument_grads, aux
else:
_, argument_grads = value_and_grad_partial()
return argument_grads
[docs]def jvp(
fn: Callable[..., Any],
mdl: Module,
primals,
tangents,
variable_tangents,
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
) -> Union[Tuple[Any, Callable[..., Any]], Tuple[Any, Callable[..., Any], Any]]:
"""A lifted version of ``jax.jvp``.
See ``jax.jvp`` for the unlifted Jacobian-vector product (forward gradient).
Note that no tangents are returned for variables. When variable tangents
are required their value should be returned explicitly by `fn`
using `Module.variables`::
>>> import flax.linen as nn
>>> import jax.numpy as jnp
>>> class LearnScale(nn.Module):
... @nn.compact
... def __call__(self, x):
... p = self.param('test', nn.initializers._init(), ())
... return p * x
>>> class Foo(nn.Module):
... @nn.compact
... def __call__(self, x):
... scale = LearnScale()
... vars_t = jax.tree_util.tree_map(jnp.ones_like,
... scale.variables.get('params', {}))
... _, out_t = nn.jvp(
... lambda mdl, x: mdl(x), scale, (x,), (jnp.zeros_like(x),),
... variable_tangents={'params': vars_t})
... return out_t
Example::
>>> def learn_scale(scope, x):
... p = scope.param('scale', nn.initializers.zeros_init(), ())
... return p * x
>>> def f(scope, x):
... vars_t = jax.tree_util.tree_map(jnp.ones_like, scope.variables().get('params', {}))
... x, out_t = lift.jvp(
... learn_scale, scope, (x,), (jnp.zeros_like(x),),
... variable_tangents={'params': vars_t})
... return out_t
Args:
fn: Function to be differentiated. Its arguments should be arrays, scalars,
or standard Python containers of arrays or scalars. It should return an
array, scalar, or standard Python container of arrays or scalars. It will
receive the scope and primals as arguments.
mdl: The module of which the variables will be differentiated.
primals: The primal values at which the Jacobian of ``fun`` should be
evaluated. Should be either a tuple or a list of arguments,
and its length should be equal to the number of positional parameters of
``fun``.
tangents: The tangent vector for which the Jacobian-vector product should be
evaluated. Should be either a tuple or a list of tangents, with the same
tree structure and array shapes as ``primals``.
variable_tangents: A dict or PyTree fo dicts with the same structure as
scopes. Each entry in the dict specifies the tangents for a variable
collection. Not specifying a collection in variable_tangents is
equivalent to passing a zero vector as the tangent.
variables: other variables collections that are available in `fn` but
do not receive a tangent.
rngs: the prngs that are available inside `fn`.
Returns:
A ``(primals_out, tangents_out)`` pair, where ``primals_out`` is
``fun(*primals)``, and ``tangents_out`` is the Jacobian-vector product of
``function`` evaluated at ``primals`` with ``tangents``. The
``tangents_out`` value has the same Python tree structure and shapes as
``primals_out``.
"""
return lift_direct_transform(
lift.jvp,
(fn,),
mdl,
primals,
tangents,
variable_tangents,
multi_scope=False,
variables=variables,
rngs=rngs,
)
ModuleT = TypeVar('ModuleT', bound=Module)
C = TypeVar('C')
[docs]def while_loop(
cond_fn: Callable[[ModuleT, C], bool],
body_fn: Callable[[ModuleT, C], C],
mdl: ModuleT,
init: C,
carry_variables: lift.CollectionFilter = False,
broadcast_variables: lift.CollectionFilter = True,
split_rngs: Mapping[lift.PRNGSequenceFilter, bool] = FrozenDict(),
) -> C:
"""Lifted version of jax.lax.while_loop.
The lifted scope is passed to `cond_fn` and `body_fn`.
Broadcasted variables are immutable. The carry variable are
mutable but cannot change shape and dtype.
This also means you cannot initialize variables inside
the body. Consider calling `body_fn` once manually before
calling `while_loop` if variable initialization is required.
Example::
>>> import flax.linen as nn
>>> import jax, jax.numpy as jnp
>>> class WhileLoopExample(nn.Module):
... @nn.compact
... def __call__(self, x):
... def cond_fn(mdl, c):
... return mdl.variables['state']['acc'] < 10
... def body_fn(mdl, c):
... acc = mdl.variable('state', 'acc', lambda: jnp.array(0))
... acc.value += 1
... y = nn.Dense(c.shape[-1])(c)
... return y
... c = x
... if self.is_mutable_collection('params'):
... return body_fn(self, c)
... else:
... return nn.while_loop(cond_fn, body_fn, self, c,
... carry_variables='state')
>>> k = jax.random.key(0)
>>> x = jnp.ones((2, 2))
>>> intial_vars = WhileLoopExample().init(k, x)
>>> result, state = WhileLoopExample().apply(intial_vars, x, mutable=['state'])
Args:
cond_fn: Should return True as long as the loop should continue.
body_fn: The body of the while loop.
mdl: The Module which should be lifted into the loop.
init: The initial state passed to the loop
carry_variables: collections that are carried through the loop
and are therefore mutable (default: none).
broadcast_variables: collections that are closed over and are
therefore read-only (default: all collections)
split_rngs: Split PRNG sequences will be different for each loop iterations.
If split is False the PRNGs will be the same across iterations.
Returns:
The final state after executing the while loop.
"""
return lift_direct_transform(
lift.while_loop,
(cond_fn, body_fn),
mdl,
init,
carry_variables,
broadcast_variables,
split_rngs,
)
def _cond_wrapper(t_fn, f_fn, scope, pred, *ops, variables, rngs):
return lift.cond(
pred, t_fn, f_fn, scope, *ops, variables=variables, rngs=rngs
)
[docs]def cond(
pred: Any,
true_fun: Callable[..., C],
false_fun: Callable[..., C],
mdl: Module,
*operands,
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
) -> C:
"""Lifted version of ``jax.lax.cond``.
The returned values from ``true_fun`` and ``false_fun``
must have the same Pytree structure, shapes, and dtypes.
The variables created or updated inside the
branches must also have the same structure.
Note that this constraint is violated when
creating variables or submodules in only one branch.
Because initializing variables in just one branch
causes the parameter structure to be different.
Example::
>>> import flax.linen as nn
>>> class CondExample(nn.Module):
... @nn.compact
... def __call__(self, x, pred):
... self.variable('state', 'true_count', lambda: 0)
... self.variable('state', 'false_count', lambda: 0)
... def true_fn(mdl, x):
... mdl.variable('state', 'true_count').value += 1
... return nn.Dense(2, name='dense')(x)
... def false_fn(mdl, x):
... mdl.variable('state', 'false_count').value += 1
... return -nn.Dense(2, name='dense')(x)
... return nn.cond(pred, true_fn, false_fn, self, x)
Args:
pred: determines if true_fun or false_fun is evaluated.
true_fun: The function evalauted when ``pred`` is `True`.
The signature is (module, *operands) -> T.
false_fun: The function evalauted when ``pred`` is `False`.
The signature is (module, *operands) -> T.
mdl: A Module target to pass.
*operands: The arguments passed to ``true_fun`` and ``false_fun``
variables: The variable collections passed to the conditional
branches (default: all)
rngs: The PRNG sequences passed to the conditionals (default: all)
Returns:
The result of the evaluated branch (``true_fun`` or ``false_fun``).
"""
return lift_direct_transform(
_cond_wrapper,
(true_fun, false_fun),
mdl,
pred,
*operands,
variables=variables,
rngs=rngs,
)
def _switch_wrapper(*args, variables, rngs, n_branches):
# first n_branches arguments are branches.
# then scope, index, and the rest are *operands
branches = args[:n_branches]
scope, index, *operands = args[n_branches:]
return lift.switch(
index, branches, scope, *operands, variables=variables, rngs=rngs
)
[docs]def switch(
index: Any,
branches: Sequence[Callable[..., C]],
mdl: Module,
*operands,
variables: lift.CollectionFilter = True,
rngs: lift.PRNGSequenceFilter = True,
) -> C:
"""Lifted version of ``jax.lax.switch``.
The returned values from ``branches``
must have the same Pytree structure, shapes, and dtypes.
The variables created or updated inside the
branches must also have the same structure.
Note that this constraint is violated when
creating variables or submodules in only one branch.
Because initializing variables in just one branch
causes the parameter structure to be different.
Example::
>>> import flax.linen as nn
>>> class SwitchExample(nn.Module):
... @nn.compact
... def __call__(self, x, index):
... self.variable('state', 'a_count', lambda: 0)
... self.variable('state', 'b_count', lambda: 0)
... self.variable('state', 'c_count', lambda: 0)
... def a_fn(mdl, x):
... mdl.variable('state', 'a_count').value += 1
... return nn.Dense(2, name='dense')(x)
... def b_fn(mdl, x):
... mdl.variable('state', 'b_count').value += 1
... return -nn.Dense(2, name='dense')(x)
... def c_fn(mdl, x):
... mdl.variable('state', 'c_count').value += 1
... return nn.Dense(2, name='dense')(x)
... return nn.switch(index, [a_fn, b_fn, c_fn], self, x)
If you want to have a different parameter structure for each branch
you should run all branches on initialization before calling switch::
>>> class MultiHeadSwitchExample(nn.Module):
... def setup(self) -> None:
... self.heads = [
... nn.Sequential([nn.Dense(10), nn.Dense(7), nn.Dense(5)]),
... nn.Sequential([nn.Dense(11), nn.Dense(5)]),
... nn.Dense(5),
... ]
...
... @nn.compact
... def __call__(self, x, index):
... def head_fn(i):
... return lambda mdl, x: mdl.heads[i](x)
... branches = [head_fn(i) for i in range(len(self.heads))]
...
... # run all branches on init
... if self.is_mutable_collection('params'):
... for branch in branches:
... _ = branch(self, x)
...
... return nn.switch(index, branches, self, x)
Args:
index: Integer scalar type, indicating which branch function to apply.
branches: Sequence of functions to be applied based on index.
The signature of each function is (module, *operands) -> T.
mdl: A Module target to pass.
*operands: The arguments passed to the branches.
variables: The variable collections passed to the conditional
branches (default: all)
rngs: The PRNG sequences passed to the conditionals (default: all)
Returns:
The result of the evaluated branch.
"""
return lift_direct_transform(
_switch_wrapper,
tuple(branches),
mdl,
index,
*operands,
variables=variables,
rngs=rngs,
n_branches=len(branches),
)
# a version of lift.custom_vjp with a single scope function
# this avoids having to lift multiple functions in
# lift_transform.
def _custom_vjp_single_scope_fn(
fn: Callable[..., Any],
backward_fn: Callable[..., Any],
grad_vars: lift.CollectionFilter = 'params',
nondiff_argnums=(),
):
nodiff_fn = functools.partial(fn, needs_residual=False)
forward_fn = functools.partial(fn, needs_residual=True)
return lift.custom_vjp(
nodiff_fn, forward_fn, backward_fn, grad_vars, nondiff_argnums
)
[docs]def custom_vjp(
fn: Callable[..., Any],
forward_fn: Callable[..., Any],
backward_fn: Callable[..., Any],
grad_vars: lift.CollectionFilter = 'params',
nondiff_argnums=(),
):
"""Lifted version of `jax.custom_vjp`.
`forward_fn` and `backward_fn` together define a custom vjp for `fn`.
The original `fn` will run in case a vjp (backward gradient) is not computed.
The `forward_fn` receives the same arguments as `fn` but is expected to return
a tuple containing the output of `fn(mdl, *args)` and the residuals that are
passed to `backward_fn`.
The `backward_fn` receives the nondiff arguments, residuals, and the output
tangents. It should return a tuple containing the variable and input tangents.
Note that the vjp function returned by `nn.vjp` can be passed as residual and
used in the `backward_fn`. The scope is unavailable during the backward pass.
If the module is required in `backward_fn`, a snapshot of the variables can
be taken and returned as a residual in the `forward_fn`.
Example::
>>> import flax.linen as nn
>>> import jax, jax.numpy as jnp
>>> class Foo(nn.Module):
... @nn.compact
... def __call__(self, x):
... def f(mdl, x):
... return mdl(x)
...
... def fwd(mdl, x):
... return nn.vjp(f, mdl, x)
...
... def bwd(vjp_fn, y_t):
... params_t, *inputs_t = vjp_fn(y_t)
... params_t = jax.tree_util.tree_map(jnp.sign, params_t)
... return (params_t, *inputs_t)
...
... sign_grad = nn.custom_vjp(
... f, forward_fn=fwd, backward_fn=bwd)
... return sign_grad(nn.Dense(1), x).reshape(())
>>> x = jnp.ones((2,))
>>> variables = Foo().init(jax.random.key(0), x)
>>> grad = jax.grad(Foo().apply)(variables, x)
Args:
fn: The function to define a custom_vjp for.
forward_fn: A function with the same arguments as ``fn`` returning an tuple
with the original output and the residuals that will be passsed to
``backward_fn``.
backward_fn: arguments are passed as
``(*nondiff_args, residuals, tangents)`` The function should return a
tuple containing the tangents for the variable in the collections
specified by `grad_vars` and the input arguments (except the module and
nondiff args).
grad_vars: The collections for which a vjp will be computed
(default: "params").
nondiff_argnums: arguments for which no vjp is computed.
Returns:
A function with the same signature as `fn` with the custom vjp.
"""
def shared_forward_fn(*args, needs_residual, **kwargs):
if needs_residual:
return forward_fn(*args, **kwargs)
else:
return fn(*args, **kwargs)
return decorator_lift_transform(
_custom_vjp_single_scope_fn,
shared_forward_fn,
backward_fn=backward_fn,
grad_vars=grad_vars,
nondiff_argnums=nondiff_argnums,
multi_scope=False,
)
def named_call(class_fn, force=True):
"""Labels a method for labelled traces in profiles.
Note that it is better to use the `jax.named_scope` context manager directly
to add names to JAX's metadata name stack.
Args:
class_fn: The class method to label.
force: If True, the named_call transform is applied even if it is globally
disabled. (e.g.: by calling `flax.linen.disable_named_call()`)
Returns:
A wrapped version of ``class_fn`` that is labeled.
"""
# We use JAX's dynamic name-stack named_call. No transform boundary needed!
@functools.wraps(class_fn)
def wrapped_fn(self, *args, **kwargs):
if (not force and not linen_module._use_named_call) or self._state.in_setup: # pylint: disable=protected-access # pylint: disable=protected-access
return class_fn(self, *args, **kwargs)
full_name = _derive_profiling_name(self, class_fn)
return jax.named_call(class_fn, name=full_name)(self, *args, **kwargs)
return wrapped_fn
def add_metadata_axis(
target: Target,
variable_axes: Mapping[lift.CollectionFilter, lift.InOutAxis] = FrozenDict(),
metadata_params: Dict[Any, Any] = {},
) -> Target:
"""A helper to manipulate boxed axis metadata.
This is a helper to manipulate the *metadata* in boxed variables, similar
to how lifted ``vmap`` and ``scan`` will handle the introduction and stripping
of the new metadata axis across a transform boundary.
Args:
target: a ``Module`` or a function taking a ``Module``
as its first argument.
variable_axes: the variable collections whose axis metadata is being
transformed. Use `None` to indicate a broadcasted collection or an integer
to specify an axis index for an introduced axis.
methods: If `target` is a `Module`, the methods of `Module` to vmap over.
metadata_params: arguments dict passed to AxisMetadata instances in the
variable tree.
Returns:
A transformed version of ``target`` that performs a transform of the
axis metadata on its variables.
"""
def add_fn(axis):
return lambda x: meta.add_axis(x, axis, metadata_params)
def remove_fn(axis):
return lambda x: meta.remove_axis(x, axis, metadata_params)
for col_name, axis in variable_axes.items():
target = map_variables(
target,
col_name,
trans_in_fn=remove_fn(axis),
trans_out_fn=add_fn(axis),
mutable=True,
)
return target